An Essential Guide to Electronic Material Surfaces and Interfaces

Editor/Author Brillson, Leonard J.
Publication Year: 2016
Publisher: Wiley

Single-User Purchase Price: $95.00
Unlimited-User Purchase Price: $142.50
ISBN: 978-1-119-02711-9
Category: Technology & Engineering - Engineering
Image Count: 172
Book Status: Available
Table of Contents

An Essential Guide to Electronic Material Surfaces and Interfaces is a streamlined yet comprehensive introduction that covers the basic physical properties of electronic materials, the experimental techniques used to measure them, and the theoretical methods used to understand, predict, and design them.

Share this

Table of Contents

  • List of Illustrations
  • List of Tables
  • Preface
  • Chapter 1: Why Surfaces and Interfaces of Electronic Materials
  • 1.1 The Impact of Electronic Materials
  • 1.2 Surface and Interface Importance as Electronics Shrink
  • 1.3 Historical Background
  • 1.4 Next Generation Electronics
  • 1.5 Problems
  • References
  • Further Reading
  • Chapter 2: Semiconductor Electronic and Optical Properties
  • 2.1 The Semiconductor Band Gap
  • 2.2 The Fermi Level and Energy Band Parameters
  • 2.3 Band Bending at Semiconductor Surfaces and Interfaces
  • 2.4 Surfaces and Interfaces in Electronic Devices
  • 2.5 Effects of Localized States: Traps, Dipoles, and Barriers
  • 2.6 Summary
  • 2.7 Problems
  • References
  • Further Reading
  • Chapter 3: Electrical Measurements of Surfaces and Interfaces
  • 3.1 Sheet Resistance and Contact Resistivity
  • 3.2 Contact Measurements: Schottky Barrier Overview
  • 3.3 Heterojunction Band Offsets: Electrical Measurements
  • 3.4 Summary
  • 3.5 Problems
  • References
  • Further Reading
  • Chapter 4: Localized States at Surfaces and Interfaces
  • 4.1 Interface State Models
  • 4.2 Intrinsic Surface States
  • 4.3 Extrinsic Surface States
  • 4.4 The Solid State Interface: Changing Perspectives
  • 4.5 Problems
  • References
  • Further Reading
  • Chapter 5: Ultrahigh Vacuum Technology
  • 5.1 Ultrahigh Vacuum Chambers
  • 5.2 Pumps
  • 5.3 Manipulators
  • 5.4 Gauges
  • 5.5 Residual Gas Analysis
  • 5.6 Deposition Sources
  • 5.7 Deposition Monitors
  • 5.8 Summary
  • 5.9 Problems
  • References
  • Further Reading
  • Chapter 6: Surface and Interface Analysis
  • 6.1 Surface and Interface Techniques
  • 6.2 Excited Electron Spectroscopies
  • 6.3 Principles of Surface Sensitivity
  • 6.4 Multi-technique UHV Chambers
  • 6.5 Summary
  • 6.6 Problems
  • References
  • Further Reading
  • Chapter 7: Surface and Interface Spectroscopies
  • 7.1 Photoemission Spectroscopy
  • 7.2 Auger Electron Spectroscopy
  • 7.3 Electron Energy Loss Spectroscopy
  • 7.4 Rutherford Backscattering Spectrometry
  • 7.5 Surface and Interface Technique Summary
  • 7.6 Problems
  • References
  • Further Reading
  • Chapter 8: Dynamical Depth-Dependent Analysis and Imaging
  • 8.1 Ion Beam-Induced Surface Ablation
  • 8.2 Auger Electron Spectroscopy
  • 8.3 X-Ray Photoemission Spectroscopy
  • 8.4 Secondary Ion Mass Spectrometry
  • 8.5 Spectroscopic Imaging
  • 8.6 Depth-Resolved and Imaging Summary
  • 8.7 Problems
  • References
  • Further Reading
  • Chapter 9: Electron Beam Diffraction and Microscopy of Atomic-Scale Geometrical Structure
  • 9.1 Low Energy Electron Diffraction – Principles
  • 9.2 Reflection High Energy Electron Diffraction
  • 9.3 Scanning Electron Microscopy
  • 9.4 Transmission Electron Microscopy
  • 9.5 Electron Beam Diffraction and Microscopy Summary
  • 9.6 Problems
  • References
  • Further Reading
  • Chapter 10: Scanning Probe Techniques
  • 10.1 Atomic Force Microscopy
  • 10.2 Scanning Tunneling Microscopy
  • 10.3 Ballistic Electron Energy Microscopy
  • 10.4 Atomic Positioning
  • 10.5 Summary
  • 10.6 Problems
  • References
  • Further Reading
  • Chapter 11: Optical Spectroscopies
  • 11.1 Overview
  • 11.2 Optical Absorption
  • 11.3 Modulation Techniques
  • 11.4 Multiple Surface Interaction Techniques
  • 11.5 Spectroscopic Ellipsometry
  • 11.6 Surface Enhanced Raman Spectroscopy
  • 11.7 Surface Photoconductivity
  • 11.8 Surface Photovoltage Spectroscopy
  • 11.9 Photoluminescence Spectroscopy
  • 11.10 Cathodoluminescence Spectroscopy
  • 11.11 Summary
  • 11.12 Problems
  • References
  • Further Reading
  • Chapter 12: Electronic Material Surfaces
  • 12.1 Geometric Structure
  • 12.2 Chemical Structure
  • 12.3 Electronic Structure
  • 12.4 Summary
  • 12.5 Problems
  • References
  • Further Reading
  • Chapter 13: Surface Electronic Applications
  • 13.1 Charge Transfer and Band Bending
  • 13.2 Oxide Gas Sensors
  • 13.3 Granular Gas Sensors
  • 13.4 Nanowire Sensors
  • 13.5 Chemical and Biosensors
  • 13.6 Surface Electronic Temperature, Pressure, and Mass Sensors
  • 13.7 Summary
  • 13.8 Problems
  • References
  • Further Reading
  • Chapter 14: Semiconductor Heterojunctions
  • 14.1 Geometrical Structure
  • 14.2 Chemical Structure
  • 14.3 Electronic Structure
  • 14.4 Conclusions
  • 14.5 Problems
  • References
  • Further Reading
  • Chapter 15: Metal–Semiconductor Interfaces
  • 15.1 Overview
  • 15.2 Metal–Semiconductor Interface Dipoles
  • 15.3 Interface States
  • 15.4 Self-Consistent Electrostatic Calculations
  • 15.5 Experimental Schottky Barriers
  • 15.6 Interface Barrier Height Engineering
  • 15.7 Atomic-Scale Control
  • 15.8 Summary
  • 15.9 Problems
  • References
  • Further Reading
  • Chapter 16: Next Generation Surfaces and Interfaces
  • 16.1 Current Status
  • 16.2 Current Device Challenges
  • 16.3 Emerging Directions
  • 16.4 The Essential Guide Conclusions
  • Appendix A: Glossary of Commonly Used Symbols
  • Appendix B: Table of Acronyms
  • Appendix C: Table of Physical Constants and Conversion Factors
  • Appendix D: Semiconductor Properties