MRI: Basic Principles and Applications

Editor/Author Dale, Brian M., Brown, Mark A. and Semelka, Richard C.
Publication Year: 2016
Publisher: Wiley

Single-User Purchase Price: $80.00
Unlimited-User Purchase Price: $120.00
ISBN: 978-1-119-01305-1
Category: Health & Medicine - Medicine
Image Count: 227
Book Status: Available
Table of Contents

This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update.

Share this

Table of Contents

  • Preface
  • ABR study guide topics
  • Chapter 1: Production of net magnetization
  • 1.1 Magnetic fields
  • 1.2 Nuclear spin
  • 1.3 Nuclear magnetic moments
  • 1.4 Larmor precession
  • 1.5 Net magnetization
  • 1.6 Susceptibility and magnetic materials
  • Chapter 2: Concepts of magnetic resonance
  • 2.1 Radiofrequency excitation
  • 2.2 Radiofrequency signal detection
  • 2.3 Chemical shift
  • Chapter 3: Relaxation
  • 3.1 T1 relaxation and saturation
  • 3.2 T2 relaxation, T2* relaxation, and spin echoes
  • Chapter 4: Principles of magnetic resonance imaging – 1
  • 4.1 Gradient fields
  • 4.2 Slice selection
  • 4.3 Readout or frequency encoding
  • 4.4 Phase encoding
  • 4.5 Sequence looping
  • Chapter 5: Principles of magnetic resonance imaging – 2
  • 5.1 Frequency selective excitation
  • 5.2 Composite pulses
  • 5.3 Raw data and image data matrices
  • 5.4 Signal-to-noise ratio and tradeoffs
  • 5.5 Raw data and k-space
  • 5.6 Reduced k-space techniques
  • 5.7 Reordered k-space filling techniques
  • 5.8 Other k-space filling techniques
  • 5.9 Phased-array coils
  • 5.10 Parallel acquisition methods
  • Chapter 6: Pulse sequences
  • 6.1 Spin echo sequences
  • 6.2 Gradient echo sequences
  • 6.3 Echo planar imaging sequences
  • 6.4 Magnetization-prepared sequences
  • Chapter 7: Measurement parameters and image contrast
  • 7.1 Intrinsic parameters
  • 7.2 Extrinsic parameters
  • 7.3 Parameter tradeoffs
  • Chapter 8: Signal suppression techniques
  • 8.1 Spatial presaturation
  • 8.2 Magnetization transfer suppression
  • 8.3 Frequency-selective saturation
  • 8.4 Nonsaturation methods
  • Chapter 9: Artifacts
  • 9.1 Motion artifacts
  • 9.2 Sequence/Protocol-related artifacts
  • 9.3 External artifacts
  • Chapter 10: Motion artifact reduction techniques
  • 10.1 Acquisition parameter modification
  • 10.2 Triggering/Gating
  • 10.3 Flow compensation
  • 10.4 Radial-based motion compensation
  • Chapter 11: Magnetic resonance angiography
  • 11.1 Time-of-flight MRA
  • 11.2 Phase contrast MRA
  • 11.3 Maximum intensity projection
  • Chapter 12: Advanced imaging applications
  • 12.1 Diffusion
  • 12.2 Perfusion
  • 12.3 Functional brain imaging
  • 12.4 Ultra-high field imaging
  • 12.5 Noble gas imaging
  • Chapter 13: Magnetic resonance spectroscopy
  • 13.1 Additional concepts
  • 13.2 Localization techniques
  • 13.3 Spectral analysis and postprocessing
  • 13.4 Ultra-high field spectroscopy
  • Chapter 14: Instrumentation
  • 14.1 Computer systems
  • 14.2 Magnet system
  • 14.3 Gradient system
  • 14.4 Radiofrequency system
  • 14.5 Data acquisition system
  • 14.6 Summary of system components
  • Chapter 15: Contrast agents
  • 15.1 Intravenous agents
  • 15.2 Oral agents
  • Chapter 16: Safety
  • 16.1 Base magnetic field
  • 16.2 Cryogens
  • 16.3 Gradients
  • 16.4 RF power deposition
  • 16.5 Contrast media
  • Chapter 17: Clinical applications
  • 17.1 General principles of clinical MR imaging
  • 17.2 Examination design considerations
  • 17.3 Protocol considerations for anatomical regions
  • 17.4 Recommendations for specific sequences and clinical situations
  • References and suggested readings