At a Glance: MRI at a Glance

Editor/Author Westbrook, Catherine
Publication Year: 2016
Publisher: Wiley

ISBN: 978-1-119-05355-2
Category: Health & Medicine - Medicine
Image Count: 243
Book Status: Pending
Predicted Release Month: March 2019
Table of Contents

MRI at a Glance encapsulates essential MRI physics knowledge. Illustrated in full colour throughout, its concise text explains complex information, to provide the perfect revision aid. It includes topics ranging from magnetism to safety, K space to pulse sequences, and image contrast to artefacts.

Share this

Table of Contents

  • Preface
  • Acknowledgement
  • How to use your textbook
  • 1 Magnetism and electromagnetism
  • Magnetic susceptibility
  • Paramagnetism
  • Diamagnetism
  • Ferromagnetism
  • Electromagnetism
  • 2 Atomic structure
  • Introduction
  • Motion within the atom
  • MR active nuclei
  • 3 Alignment
  • The classical theory
  • The quantum theory
  • What do the quantum and classical theories tell us?
  • 4 Precession
  • Precessional (Larmor) frequency
  • Precessional phase
  • 5 Resonance and signal generation
  • Energy absorption
  • Phase coherence
  • The MR signal
  • 6 Contrast mechanisms
  • What is contrast?
  • Extrinsic contrast parameters
  • Intrinsic contrast mechanisms
  • The composition of fat and water
  • 7 Relaxation mechanisms
  • Relaxation processes
  • Field inhomogeneities
  • 8 T1 recovery
  • T1 recovery in fat
  • T1 recovery in water
  • Control of T1 recovery
  • 9 T2 decay
  • T2 decay in fat
  • T2 decay in water
  • Control of T2 decay
  • 10 T1 weighting
  • Typical values
  • 11 T2 weighting
  • Typical values
  • 12 PD weighting
  • Typical values
  • Other types of weighting
  • 13 Conventional spin echo
  • Mechanisms of CSE
  • Contrast
  • Typical values
  • Uses
  • 14 Fast or turbo spin echo – how it works
  • Mechanism
  • Contrast
  • 15 Fast or turbo spin echo – how it is used
  • Typical values
  • Uses
  • 16 Inversion recovery
  • Mechanism
  • Contrast
  • Uses
  • 17 Gradient echo – how it works
  • Mechanism
  • 18 Gradient echo – how it is used
  • Typical values
  • Uses
  • 19 The steady state
  • Echo generation in the steady state
  • 20 Coherent gradient echo
  • Mechanism
  • Typical values
  • Uses
  • 21 Incoherent gradient echo
  • Mechanism
  • Typical values
  • Uses
  • 22 Steady-state free precession
  • Mechanism
  • Typical values
  • Uses
  • 23 Balanced gradient echo
  • Mechanism
  • Typical values
  • Uses
  • 24 Ultrafast sequences
  • Turbo gradient echo
  • Echo planar imaging
  • Typical values
  • Uses
  • 25 Diffusion and perfusion imaging
  • Diffusion weighted imaging
  • Perfusion imaging
  • 26 Functional imaging techniques
  • Functional MR imaging (fMRI)
  • Spectroscopy
  • 27 Gradient functions
  • How gradients work
  • 28 Slice selection
  • Mechanism
  • Slice thickness
  • 29 Phase encoding
  • Mechanism
  • 30 Frequency encoding
  • Mechanism
  • 31 K space – what is it?
  • 32 K space – how is it filled?
  • 33 K space and image quality
  • K space – signal and contrast
  • K space – spatial resolution
  • 34 Data acquisition – frequency
  • Changing the receive bandwidth
  • Changing the frequency matrix
  • 35 Data acquisition – phase
  • 36 Data acquisition – scan time
  • TR
  • Phase matrix
  • Number of signal averages (NSA)
  • Types of acquisition
  • Reducing scan time
  • 37 K space traversal and pulse sequences
  • K space traversal in gradient echo
  • K space traversal in spin echo
  • K space traversal in single shot
  • K space traversal in spiral imaging
  • 38 Alternative K space filling techniques
  • Partial or fractional averaging
  • Rectangular FOV
  • Anti-aliasing/over-sampling
  • Centric imaging
  • Keyhole imaging
  • Parallel imaging
  • 39 Signal to noise ratio
  • Proton density
  • Coil type and position
  • TR
  • TE
  • Flip angle
  • Number of signal averages (NSA)
  • Receive bandwidth
  • 40 Contrast to noise ratio
  • Administration of contrast
  • Magnetization transfer contrast
  • Chemical suppression techniques
  • Flow techniques
  • T2 weighting
  • 41 Spatial resolution
  • Voxel volume and SNR
  • Voxel volume and resolution
  • 42 Chemical shift artefacts
  • Appearance
  • Remedy
  • Appearance
  • Remedy
  • 43 Phase mismapping
  • Appearance
  • Remedy
  • 44 Aliasing
  • Frequency aliasing
  • Phase aliasing
  • 45 Other artefacts
  • Magnetic susceptibility
  • Cross-talk
  • Truncation artefact
  • Zipper artefact
  • 46 Flow phenomena
  • Time-of-flight phenomenon
  • Entry slice phenomenon
  • Intra-voxel dephasing
  • 47 Time-of-flight MR angiography
  • Mechanism
  • Clinical applications
  • General advantages of TOF MRA
  • General disadvantages of TOF MRA
  • 48 Phase contrast MR angiography
  • Mechanism
  • Clinical uses
  • 49 Contrast-enhanced MR angiography
  • Mechanism
  • Administration
  • Image timing
  • 50 Contrast agents
  • Gadolinium
  • Iron oxide
  • Other contrast agents
  • 51 Magnets
  • Permanent magnets
  • Electromagnets
  • 52 Radiofrequency coils
  • Transmit coils
  • Receiver coils
  • RF coil types
  • 53 Gradients and other hardware
  • Gradients
  • The pulse control unit
  • The operator interface
  • Data storage
  • 54 MR safety – bio-effects
  • Static magnetic field bio-effects
  • Time-varying field bio-effects
  • Site planning
  • 55 MR safety – projectiles
  • Quenching
  • Metallic implants and prostheses
  • Appendix 1(a): The results of optimizing image quality
  • Appendix 1(b): Parameters and their associated trade-offs
  • Appendix 2: Artefacts and their remedies
  • Appendix 3: Main manufacturers’ acronyms
  • Glossary