Comprehensive Energy Systems

Editor: Dincer, Ibrahim
Publication Year: 2018
Publisher: Elsevier Science & Technology

Single-User Purchase Price: $3200.00
Unlimited-User Purchase Price: $4800.00
ISBN: 978-0-12-809597-3
Image Count: 3948
Book Status: Available
Table of Contents

This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development.

Share this

Table of Contents

  • Acknowledgments
  • Dedication
  • Editor in Chief
  • Volume Editors
  • Preface
  • Permissions Acknowledgment
  • Volume 1 Energy Fundamentals
  • Part A
  • 1.1 Energy Units, Conversions, and Dimensional Analysis
  • 1.2 Historical Aspects of Energy
  • 1.3 Environmental Dimensions of Energy
  • 1.4 Sustainability Dimensions of Energy
  • 1.5 Thermodynamic Aspects of Energy
  • 1.6 Exergy
  • 1.7 Energy and Exergy Efficiencies
  • 1.8 Exergoeconomics
  • 1.9 Exergoenvironmental Analysis
  • 1.10 Heat Transfer Aspects of Energy
  • 1.11 Fluid Mechanics Aspects of Energy
  • Part B
  • 1.12 Fossil Fuels
  • 1.13 Hydrogen Energy
  • 1.14 Hydro Energy
  • 1.15 Solar Energy
  • 1.16 Wind Energy
  • 1.17 Geothermal Energy
  • 1.18 Ocean (Marine) Energy
  • 1.19 Biomass Energy
  • 1.20 Nuclear Energy
  • 1.21 Food and Energy
  • 1.22 Biofuels
  • 1.23 Energy and Air Pollution
  • 1.24 Energy and Water Pollution
  • 1.25 Energy and Solid Wastes
  • 1.26 Energy Law and Emerging Legal Issues
  • 1.27 Life Cycle Assessment of Energy
  • 1.28 Energy Optimization
  • 1.29 Energy Innovation
  • 1.30 Future Energy Directions
  • 1.31 Concluding Remarks
  • Volume 2 Energy Materials
  • 2.1 Ammonia
  • 2.2 Carbonaceous Materials
  • 2.3 Boron
  • 2.4 Thin Films
  • 2.5 PV Materials
  • 2.6 Dye-Sensitized Materials
  • 2.7 Porous Materials
  • 2.8 Magnetic Materials
  • 2.9 Composite Materials
  • 2.10 Semiconductors
  • 2.11 Superconductors
  • 2.12 Electrolytic Materials
  • 2.13 Solvent Materials
  • 2.14 Latent Heat Storage Systems
  • 2.15 Refrigerants
  • 2.16 Catalysts
  • 2.17 Photoactive Materials
  • 2.18 Hydrides
  • 2.19 Solid Oxides
  • 2.20 Batteries
  • 2.21 Supercapacitors
  • 2.22 Piezoelectric Materials
  • 2.23 Pyroelectric Materials
  • 2.24 Insulation Materials
  • 2.25 Hydrophobic Materials
  • 2.26 Dust Repellent Materials
  • 2.27 CO2 Capturing Materials
  • 2.28 Anti-Corrosive Materials
  • 2.29 Desulfurization Materials
  • 2.30 Novel Building Materials
  • 2.31 Material Recycling
  • 2.32 Future Directions in Energy Materials
  • 2.33 Concluding Remarks
  • Volume 3 Energy Production
  • 3.1 Hydrogen Production
  • 3.2 Ammonia Production
  • 3.3 Mitochondrial Energy Production
  • 3.4 Renewable Energy Production
  • 3.5 Solar Energy Production
  • 3.6 Geothermal Energy Production
  • 3.7 Hydro Energy Production
  • 3.8 Ocean (Marine) Energy Production
  • 3.9 Piezoelectric Energy Production
  • 3.10 Electrochemical Energy Production
  • 3.11 Chemical Energy Production
  • 3.12 Microbial Energy Production
  • 3.13 Fusion Energy Production
  • 3.14 Fission Energy Production
  • 3.15 Neuronal Energy Production
  • 3.16 Thermal Energy Production
  • 3.17 Photonic Energy Production
  • 3.18 Energy Production From Oil Sands
  • 3.19 Energy Production From Coal
  • 3.20 Concluding Remarks
  • Volume 4 Energy Conversion
  • Part A
  • 4.1 The Role of Energy Conversion
  • 4.2 Heat Exchangers
  • 4.3 Heat Pipes
  • 4.4 Heat Pumps
  • 4.5 Heat Engines
  • 4.6 Stirling Engines
  • 4.7 Gas Turbine Cycles
  • 4.8 Steam and Organic Rankine Cycles
  • 4.9 Combined Energy Conversion Systems
  • 4.10 Integrated Gasification Combined Cycles
  • 4.11 Geothermal Energy Conversion
  • 4.12 Hydropower Conversion
  • 4.13 Magnetic Energy Conversion
  • 4.14 Electromechanical Energy Conversion
  • Part B
  • 4.15 Solar Cells
  • 4.16 Solar Ponds
  • 4.17 Solar Tower Systems
  • 4.18 Solar Fuels
  • 4.19 PV-Based Energy Conversion Systems
  • 4.20 Thermoelectric Energy Conversion
  • 4.21 Photoelectrochemical Energy Conversion
  • 4.22 Electrochemical Energy Conversion
  • 4.23 Solar Thermochemical Energy Conversion
  • 4.24 Hydrogen Energy Conversion Systems
  • 4.25 Electrolyzers
  • 4.26 Plasma Gasification Energy Conversion Systems
  • 4.27 Pyrolysis Energy Conversion Systems
  • 4.28 Fundamentals of Fuel Cell Technologies
  • 4.29 Bioenergy Conversion
  • 4.30 District Energy Conversion Systems
  • 4.31 Concluding Remarks
  • Volume 5 Energy Management
  • 5.1 Energy Auditing
  • 5.2 Energy Conservation
  • 5.3 Waste Energy Management
  • 5.4 Energy Reliability and Management
  • 5.5 Exergy Management
  • 5.6 Energy Management Softwares and Tools
  • 5.7 Energy Quality Management
  • 5.8 Sustainable Energy Management
  • 5.9 Optimization in Energy Management
  • 5.10 Wireless Technologies in Energy Management
  • 5.11 Smart Energy Management
  • 5.12 Energy Management in Smart Cities
  • 5.13 Smart Grid Energy Management
  • 5.14 Patterns Recognition in Energy Management
  • 5.15 Energy Management in Network Systems
  • 5.16 Energy Management in Data Centers
  • 5.17 Energy Management in Wind Energy Systems
  • 5.18 Energy Management in Geothermal Energy Systems
  • 5.19 Energy Management in Ocean Energy Systems
  • 5.20 Energy Management in University Campuses
  • 5.21 Energy Management in Hospitals
  • 5.22 Energy Management in Hotels
  • 5.23 Energy Management in District Energy Systems
  • 5.24 Sectoral Energy and Exergy Management
  • 5.25 Concluding Remarks