An Introduction to Biomechanics

Editors: Humphrey, Jay D. and ORourke, Sherry L.
Publication Year: 2015
Publisher: Springer Science+Business Media

Single-User Purchase Price: $99.00
Unlimited-User Purchase Price: Not Available
ISBN: 978-1-4939-2623-7
Category: Technology & Engineering - Engineering
Image Count: 358
Book Status: Available
Table of Contents

This book covers the fundamentals of biomechanics. Topics include bio solids, biofluids, stress, balance and equilibrium. Students are encouraged to contextualize principles and exercises within a "big picture" of biomechanics. This is an ideal book for undergraduate students with interests in biomedical engineering.

Share this

This book is found in the following Credo Collections:

Table of Contents

  • Dedication
  • Preface to the Second Edition
  • Preface to the First Edition
  • Comments from a Student to a Student
  • Acknowledgments
  • 1. Introduction
  • 1.1 Point of Departure
  • 1.2 Health Care Applications
  • 1.3 What Is Continuum Mechanics?
  • 1.4 A Brief on Cell Biology
  • 1.5 The Extracellular Matrix
  • 1.6 Mechanotransduction in Cells
  • 1.7 General Method of Approach
  • Chapter Summary
  • Appendix 1: Engineering Statics
  • Exercises
  • Part I Background
  • 2. Stress, Strain, and Constitutive Relations
  • 2.1 Introduction
  • 2.2 Concept of Stress
  • 2.3 Stress Transformations
  • 2.4 Principal Stresses and Maximum Shear
  • 2.5 Concept of Strain
  • 2.6 Constitutive Behavior
  • 2.6.1 Illustrative Characteristic Behaviors
  • 2.6.2 Hookean LEHI Behavior
  • 2.6.3 Hooke ’ s Law for Transverse Isotropy
  • 2.6.4 Hooke ’ s Law for Orthotropy
  • 2.6.5 Other Coordinate Systems
  • 2.7 Mechanical Properties of Bone
  • Chapter Summary
  • Appendix 2: Material Properties
  • Exercises
  • Part II Biosolid Mechanics
  • 3. Equilibrium, Universal Solutions, and Inflation
  • 3.1 General Equilibrium Equations
  • 3.2 Navier–Space Equilibrium Equations
  • 3.3 Axially Loaded Rods
  • 3.3.1 Biological Motivation
  • 3.3.2 Mathematical Formulation
  • 3.4 Pressurization and Extension of a Thin-Walled Tube
  • 3.4.1 Biological Motivation
  • 3.4.2 Mathematical Formulation
  • 3.5 Pressurization of a Thin Spherical Structure
  • 3.5.1 Biological Motivation
  • 3.5.2 Mathematical Formulation
  • 3.6 Thick-Walled Cylinders
  • Chapter Summary
  • Appendix 3: First Moments of Area
  • Exercises
  • 4. Extension and Torsion
  • 4.1 Deformations Due to Extension
  • 4.1.1 Biological Motivation
  • 4.1.2 Theoretical Framework
  • 4.1.3 Clinical Application
  • 4.2 Shear Stress Due to Torsion
  • 4.2.1 Introduction
  • 4.2.2 Biological Motivation
  • 4.2.3 Mathematical Formulation
  • 4.3 Principal Stresses and Strains in Torsion
  • 4.4 Angle of Twist Due to Torque
  • 4.4.1 Basic Derivation
  • 4.4.2 Statically Indeterminate Problems
  • 4.5 Experimental Design: Bone Properties
  • 4.6 Experimental Design: Papillary Muscles
  • 4.6.1 Biological Motivation
  • 4.6.2 Experimental Design
  • 4.7 Inflation, Extension, and Twist
  • Chapter Summary
  • Appendix 4: Second Moments of Area
  • Exercises
  • 5. Beam Bending and Column Buckling
  • 5.1 Shear Forces and Bending Moments
  • 5.2 Stresses in Beams
  • 5.2.1 Biological Motivation
  • 5.2.2 Theoretical Framework
  • 5.2.3 Illustrative Examples
  • 5.3 Deformation in Beams
  • 5.3.1 Biological Motivation
  • 5.3.2 Theoretical Framework
  • 5.3.3 Illustrative Examples
  • 5.4 Transducer Design: The AFM
  • 5.4.1 Introduction
  • 5.4.2 The Atomic Force Microscope
  • 5.4.3 Illustrative Example
  • 5.5 Principle of Superposition
  • 5.6 Column Buckling
  • 5.6.1 Concept of Stability
  • 5.6.2 Buckling of a Cantilevered Column
  • Chapter Summary
  • Appendix 5: Parallel Axis Theorem and Composite Sections
  • Exercises
  • 6. Some Nonlinear Problems
  • 6.1 Kinematics
  • 6.2 Pseudoelastic Constitutive Relations
  • 6.3 Design of Biaxial Tests on Planar Membranes
  • 6.3.1 Biological Motivation
  • 6.3.2 Theoretical Framework
  • 6.4 Stability of Elastomeric Balloons
  • 6.4.1 Biological Motivation
  • 6.4.2 Theoretical Framework
  • 6.4.3 Inflation of a Neuroangioplasty Balloon
  • 6.5 Residual Stress and Arteries
  • 6.5.1 Biological Motivation
  • 6.5.2 Theoretical Framework
  • 6.5.3 Illustrative Results
  • 6.6 A Role of Vascular Smooth Muscle
  • 6.6.1 Muscle Basics
  • 6.6.2 Quantification
  • Chapter Summary
  • Appendix 6: Matrices
  • Exercises
  • 7. Stress, Motion, and Constitutive Relations
  • 7.1 Introduction
  • 7.2 Stress and Pressure
  • 7.3 Kinematics: The Study of Motion
  • 7.3.1 Velocity and Acceleration
  • 7.3.2 Fluid Rotation
  • 7.3.3 Rate of Deformation
  • 7.4 Constitutive Behavior
  • 7.4.1 Newtonian Behavior
  • 7.4.2 Non-Newtonian Behavior
  • 7.5 Blood Characteristics
  • 7.5.1 Plasma
  • 7.5.2 Blood Cells
  • 7.5.3 Additional Rheological Considerations
  • 7.6 Cone-and-Plate Viscometry
  • Chapter Summary
  • Appendix 7: Vector Calculus Review
  • Exercises
  • Part III Biofluid Mechanics 351
  • 8. Fundamental Balance Relations
  • 8.1 Balance of Mass
  • 8.2 Balance of Linear Momentum
  • 8.3 Navier–Stokes Equations
  • 8.4 The Euler Equation
  • 8.5 The Bernoulli Equation
  • 8.5.1 Bernoulli Equation for Flow Along a Streamline
  • 8.5.2 Bernoulli Equation for Irrotational Flow
  • 8.5.3 Further Restrictions for the Bernoulli Equation
  • 8.6 Measurement of Pressure and Flow
  • 8.6.1 Pressure
  • 8.6.2 Flow
  • 8.7 Navier–Stokes Worksheets
  • Chapter Summary
  • Appendix 8: Differential Equations
  • Exercises
  • 9. Some Exact Solutions
  • 9.1 Flow Between Parallel Flat Plates
  • 9.1.1 Biological Motivation
  • 9.1.2 Mathematical Formulation
  • 9.2 Steady Flow in Circular Tubes
  • 9.2.1 Biological Motivation
  • 9.2.2 Mathematical Formulation
  • 9.3 Circumferential Flow Between Concentric Cylinders
  • 9.3.1 Bioreactor Application
  • 9.3.2 Mathematical Formulation
  • 9.3.3 Viscometer Application
  • 9.4 Steady Flow in an Elliptical Cross Section
  • 9.4.1 Biological Motivation
  • 9.4.2 Mathematical Formulation
  • 9.5 Pulsatile Flow
  • 9.5.1 Some Biological Motivation
  • 9.5.2 Mathematical Formulation
  • 9.6 Non-Newtonian Flow in a Circular Tube
  • 9.6.1 Motivation
  • 9.6.2 Mathematical Formulation
  • Chapter Summary
  • Appendix 9: Biological Parameters
  • Exercises
  • 10. Control Volume and Semi-empirical Methods
  • 10.1 Fundamental Equations
  • 10.1.1 Theoretical Framework
  • 10.1.2 Special Cases for Mass and Momentum
  • 10.1.3 The Energy Equation
  • 10.2 Control Volume Analyses in Rigid Conduits
  • 10.2.1 Clinical Motivation
  • 10.2.2 Illustrative Examples
  • 10.3 Control Volume Analyses in Deforming Containers
  • 10.3.1 Clinical Motivation
  • 10.3.2 Mathematical Formulation
  • 10.4 Murray ’ s Law and Optimal Design
  • 10.4.1 Straight Segment
  • 10.4.2 Bifurcation Areas
  • 10.4.3 Bifurcation Patterns
  • 10.5 Buckingham Pi and Experimental Design
  • 10.5.1 Motivation
  • 10.5.2 Recipe
  • 10.6 Pipe Flow
  • 10.7 Conclusion
  • Chapter Summary
  • Appendix 10: Thermodynamics
  • Exercises
  • 11. Coupled Solid–Fluid Problems
  • 11.1 Vein Mechanobiology
  • 11.1.1 Biological Motivation
  • 11.1.2 Theoretical Framework
  • 11.2 Diffusion Through a Membrane
  • 11.2.1 Biological Motivation
  • 11.2.2 Theoretical Basis
  • 11.2.3 Illustration
  • 11.3 Dynamics of a Saccular Aneurysm
  • 11.3.1 Biological Motivation
  • 11.3.2 Mathematical Framework
  • 11.4 Viscoelasticity: QLV and Beyond
  • 11.4.1 Linearized Viscoelasticity
  • 11.4.2 Quasilinear Viscoelasticity
  • 11.4.3 Need for Nonlinear Theories
  • 11.5 Lubrication of Articulating Joints
  • 11.5.1 Biological Motivation
  • 11.5.2 Hydrodynamic Lubrication
  • 11.5.3 Need for a Mixture Theory
  • 11.6 Thermomechanics, Electromechanics, and Chemomechanics
  • Chapter Summary
  • Appendix 11: Wave Equations
  • Exercises
  • Part IV Closure
  • 12. Epilogue
  • 12.1 Future Needs in Biomechanics
  • 12.2 Need for Lifelong Learning
  • 12.3 Conclusion
  • References
  • About the Authors