Handbook of Visual Optics

Editor: Artal, Pablo
Publication Year: 2017
Publisher: CRC Press

Single-User Purchase Price: $470.00
Unlimited-User Purchase Price: Not Available
ISBN: 978-1-48-223796-2
Category: Science - Biology
Image Count: 407
Book Status: Available
Table of Contents

Handbook of Visual Optics offers an authoritative overview of encyclopedic knowledge in the field of physiological optics. It builds from fundamental concepts to the science and technology of instruments and practical procedures of vision correction, integrating expert knowledge from physics, medicine, biology, psychology, and engineering.

Share this

Table of Contents

  • Preface
  • Editor
  • Contributors
  • PART I INTRODUCTION
  • 1. History of physiological optics in the twentieth century - Gerald Westheimer
  • 1.1 Status at the beginning of the century
  • 1.2 The foundations
  • 1.3 Structural optics of the eye
  • 1.3.1 Eye dimension and axial length
  • 1.3.2 Cornea
  • 1.3.3 The crystalline lens
  • 1.3.4 Transmission of the ocular media
  • 1.3.5 Retinal optics
  • 1.4 The retinal image
  • 1.4.1 Aberrations of the eye
  • 1.4.2 Quality of the retinal image
  • 1.4.3 Optical transfer function
  • 1.4.4 Strehl ratio
  • 1.4.5 Stray light
  • 1.5 Ophthalmic instrumentation
  • 1.5.1 Ophthalmoscopy
  • 1.5.2 Optometers and automatic objective refractometers
  • 1.6 Spurt at the end of the twentieth century
  • References
  • 2. Possibilities in physiological optics - David R. Williams and Sarah Walters
  • 2.1 Introduction
  • 2.2 Disruptive technologies for refracting the eye
  • 2.3 A transformational technology for vision correction
  • 2.4 Can elucidating the fundamental mechanism of emmetropization help us prevent refractive error?
  • 2.5 Virtual and augmented reality: A renaissance for applied visual psychophysics
  • 2.6 How good can the ophthalmoscope get?
  • 2.7 Outstanding issues about how the retina catches photons
  • 2.8 Can optical technology help us disentangle the neural circuitry of the retina?
  • 2.9 Can optical technology accelerate the next generation of cures for blindness?
  • References
  • PART II FUNDAMENTALS
  • 3. Geometrical optics - Jim Schwiegerling
  • 3.1 Introduction
  • 3.1.1 What is geometrical optics?
  • 3.1.2 Sign convention
  • 3.1.3 Wavelength, speed of light, and refractive index
  • 3.2 Waves, rays
  • 3.2.1 Vergence
  • 3.2.2 Rays and wavefronts
  • 3.3 Laws of refraction and reflection
  • 3.3.1 Reflection from a planar surface
  • 3.3.2 Snell's law at an interface
  • 3.3.3 Total internal reflection
  • 3.3.4 Prisms
  • 3.4 Refraction and reflection from a spherical surface
  • 3.4.1 Refraction from a spherical surface
  • 3.4.2 Reflection from a spherical mirror
  • 3.5 Gaussian imaging equation
  • 3.5.1 Thick lenses and Gaussian imaging
  • 3.5.2 Cardinal points
  • 3.5.3 Aperture stop and pupils
  • 3.5.4 Chief and marginal rays
  • 3.6 Cylindrical and toric surfaces
  • 3.6.1 Power and axis of a cylindrical lens
  • 3.6.2 Toric and spherocylindrical surfaces
  • 3.7 Visual instruments
  • 3.7.1 Simple magnifier and magnifying power
  • 3.7.2 Microscopes
  • 3.7.3 Telescopes and angular magnification
  • 3.8 Summary
  • 4. Wave optics - Daniel Malacara
  • 4.1 Wave nature of light
  • 4.1.1 Mathematical representation of waves
  • 4.1.2 Electromagnetic waves
  • 4.1.3 Wave equation
  • 4.1.4 Wave superposition
  • 4.1.4.1 Two waves with the same frequency and wavelength, traveling in the same direction
  • 4.1.4.2 Two waves with different frequency and wavelength, traveling in the same direction
  • 4.1.4.3 Two waves with the same frequency and wavelength, traveling in opposite directions
  • 4.1.4.4 Stationary waves
  • 4.2 Interferences
  • 4.2.1 Coherence of a light beam
  • 4.2.1.1 Temporal coherence
  • 4.2.1.2 Spatial coherence
  • 4.2.1.3 Van Cittert–Zernike theorem
  • 4.2.2 Young's double-slit experiment
  • 4.2.3 Michelson interferometer
  • 4.2.3.1 Coherence requirements
  • 4.2.3.2 Interference fringes classification
  • 4.2.3.3 Complementary interference pattern
  • 4.3 Diffraction
  • 4.3.1 Huygens and Huygens–Fresnel theory
  • 4.3.2 Kirchhoff theory
  • 4.3.3 Fresnel diffraction
  • 4.3.3.1 Single slit: Cornu spiral
  • 4.3.3.2 Circular aperture
  • 4.3.3.3 Fresnel zone plate: Pinhole camera
  • 4.3.4 Fraunhofer diffraction: Fourier transforms
  • 4.3.4.1 Single slit and rectangular aperture
  • 4.3.4.2 Circular aperture
  • 4.4 Polarized light
  • 4.4.1 Unpolarized and polarized light: Malus law
  • 4.4.2 Elliptical and circularly polarized light
  • 4.4.3 Polarized light representation
  • 4.4.3.1 Poincaré sphere
  • 4.4.3.2 Mueller matrices
  • 4.4.4 Natural light and partially polarized light
  • 4.4.5 Polarization states identification
  • 4.4.6 Generation of polarized light
  • 4.4.6.1 By absorption: Polarizers
  • 4.4.6.2 By reflection or refraction: Polarizing prism
  • 4.4.6.3 By double refraction
  • 4.4.6.4 By scattering
  • Recommended reading
  • 5. Aberrations in optical systems - José Sasián
  • 5.1 Introduction
  • 5.2 Axially symmetrical systems
  • 5.2.1 Wavefront deformation from a sphere
  • 5.2.2 Aberration coefficients
  • 5.2.3 Cooke triplet lens example
  • 5.3 Pupil aberrations
  • 5.4 Nonaxially symmetric systems
  • Further reading
  • 6. Photometry - Yoshi Ohno
  • 6.1 Introduction
  • 6.2 Basis of physical photometry
  • 6.2.1 Spectral luminous efficiency function
  • 6.2.2 Photometric base unit, the candela
  • 6.3 Photometric quantities and units
  • 6.3.1 Luminous flux
  • 6.3.2 Luminous intensity
  • 6.3.2.1 Solid angle
  • 6.3.3 Illuminance
  • 6.3.4 Luminance
  • 6.3.5 Luminous exposure
  • 6.3.6 Luminous energy
  • 6.3.7 Troland
  • 6.4 Principles in photometry
  • 6.4.1 Inverse square law
  • 6.4.2 Lambert's cosine law
  • 6.4.2.1 Lambertian surface
  • 6.4.2.2 Perfect (reflecting/transmitting) diffuser
  • 6.4.3 Relationship between illuminance and luminance
  • 6.4.3.1 Reflectance (ρ)
  • 6.4.3.2 Luminance factor (β)
  • 6.4.3.3 Luminance coefficient (q)
  • 6.4.4 Planck's law
  • 6.5 Colorimetric quantities
  • 6.5.1 Color matching functions and tristimulus values
  • 6.5.2 Chromaticity coordinates
  • 6.5.3 Correlated color temperature
  • 6.5.4 Color quantities for single-color lights
  • 6.6 Future prospect for photometry
  • References
  • 7. Characterization of visual stimuli using the standard display model - Joyce E. Farrell, Haomiao Jiang, and Brian A. Wandell
  • 7.1 Introduction
  • 7.2 Display technologies for vision science
  • 7.2.1 Cathode ray tubes
  • 7.2.2 Liquid crystal displays
  • 7.2.3 Organic light-emitting diodes
  • 7.2.4 Digital light projectors
  • 7.3 Standard display model and stimulus characterization
  • 7.3.1 Overview
  • 7.3.2 Spectral radiance and gamma curves
  • 7.3.3 Subpixel point spread functions
  • 7.3.4 Linearity
  • 7.3.5 Model summary
  • 7.4 Display calibration
  • 7.4.1 Pixel independence
  • 7.4.2 Spectral homogeneity
  • 7.4.3 Spatial homogeneity (shift invariance)
  • 7.5 Display simulations
  • 7.5.1 Color discriminations: The impact of bit depth
  • 7.5.2 Spatial–spectral discriminations
  • 7.6 Summary
  • 7.6.1 Applications of the standard display model
  • 7.6.2 Future display technologies
  • References
  • 8. Basic ophthalmic instruments - Walter D. Furlan
  • 8.1 Introduction
  • 8.2 Instruments for the examination of the anterior segment
  • 8.2.1 Keratometers
  • 8.2.1.1 Principles of keratometry
  • 8.2.1.2 One- and two-position keratometers
  • 8.2.1.3 Automated keratometry
  • 8.2.2 Corneal topography
  • 8.2.2.1 Basic topographic principles
  • 8.2.3 Slit lamp
  • 8.2.3.1 Fundamentals of slit-lamp biomicroscopy
  • 8.2.3.2 Slit-lamp accessories
  • 8.2.3.3 Goldmann applanation tonometer
  • 8.2.4 Noncontact tonometers and the ORA
  • 8.2.4.1 ORA
  • 8.3 Retinal imaging instruments
  • 8.3.1 Direct ophthalmoscope
  • 8.3.2 Indirect and binocular ophthalmoscope
  • 8.3.3 Retinography (fundus cameras)
  • 8.4 Objective refraction tests
  • 8.4.1 Retinoscope
  • 8.4.1.1 Illuminating systems
  • 8.4.1.2 Viewing system
  • 8.4.1.3 Neutralization of the reflex: Relationship between refractive error and the working distance
  • 8.4.1.4 Retinoscopy of astigmatic eyes
  • 8.4.2 Optometers and autorefractors
  • 8.4.2.1 The Badal optometer and the Scheiner disc
  • 8.4.2.2 Modern autorefractometers
  • 8.5 Subjective refraction equipment
  • 8.5.1 Visual acuity testing devices, visual acuity test charts, and optotype projector and displays
  • 8.5.2 Phoropters and trial case lenses
  • 8.5.3 Contrast sensitivity tests
  • References
  • 9. Instrumentation for adaptive optics - Chris Dainty
  • 9.1 Introduction and chapter outline
  • 9.2 Principles of adaptive optics
  • 9.3 Wavefront sensors
  • 9.4 Wavefront correctors: Deformable mirrors and spatial light modulators
  • 9.5 Control systems
  • 9.6 Other considerations
  • References
  • 10. Anatomy and embryology of the eye: An overview - Vivian Choh and Jacob G. Sivak
  • 10.1 Introduction
  • 10.2 Anatomy of the human eye
  • 10.2.1 Outer tunic: Cornea, sclera, and limbus
  • 10.2.2 Uvea: Choroid, ciliary body, and iris
  • 10.2.3 Retina
  • 10.2.4 Lens
  • 10.2.5 Vitreous
  • 10.2.6 Ocular adnexa
  • 10.3 Embryonic development of the eye
  • 10.3.1 Early embryogenesis
  • 10.3.2 Formation of the optic cup
  • 10.3.3 Mesenchyme
  • 10.3.4 Retinal development
  • 10.3.5 Lens development
  • 10.3.6 Corneal development
  • 10.3.7 Development of the sclera, choroid, ciliary body, and iris
  • 10.4 Eye development and optical function
  • 10.4.1 Cornea
  • 10.4.2 Lens
  • Acknowledgments
  • References
  • 11. The retina - Michael A. Freed
  • 11.1 Introduction
  • 11.2 Photoreceptors transduce light into electrical signals
  • 11.2.1 Photoreceptor structure
  • 11.2.2 Light is transduced into voltage
  • 11.2.3 Transduction in detail
  • 11.2.4 Transduction follows a 2nd messenger scheme
  • 11.2.5 Opsins determine wavelength sensitivity
  • 11.3 It takes both rods and cone photoreceptors
  • 11.3.1 Rods are more sensitive to light than cones
  • 11.3.2 Rods are more reliable reporters of single photons than cones are
  • 11.3.3 Cones respond to higher intensities than rods do
  • 11.4 Structure of the retina and its basic components
  • 11.4.1 General organization of the retina
  • 11.4.2 Layering of the retina
  • 11.4.3 Stratification of the inner plexiform layer
  • 11.4.3.1 How neurons send signals from one to another
  • 11.4.4 Chemical synapse
  • 11.4.5 Gap junction
  • 11.4.6 Ephaptic synapse
  • 11.4.7 Inhibitory and excitatory synapses
  • 11.4.8 Dyadic synapse
  • 11.4.9 Digital and analog signaling
  • 11.5 Organization of the retina into circuits
  • 11.5.1 Neuron types
  • 11.5.2 Vertical and lateral pathways
  • 11.5.3 Negative feedback loops
  • 11.5.4 Analog-to-digital conversion
  • 11.6 How the retina is designed to process information
  • 11.6.1 Retina processing in the light is compressive
  • 11.6.2 Retinal compression is similar to video compression
  • 11.6.3 Retinal processing in the dark is expansive
  • 11.7 ON and OFF Pathways
  • 11.8 Rod and cone pathways
  • 11.8.1 Different pathways for different light levels
  • 11.9 Retinal circuits for filtering signals
  • 11.9.1 Temporal changes
  • 11.9.2 Luminance
  • 11.9.3 Spatial contrast
  • 11.9.4 Motion
  • 11.9.5 Direction of motion
  • 11.9.6 Color
  • References
  • 12. Visual system architecture - Jonathan Winawer and Hiroshi Horiguchi
  • 12.1 Introduction
  • 12.2 Visual information flow from retina
  • 12.2.1 Hemidecussation
  • 12.2.2 Major subcortical targets of the optic nerve
  • 12.2.2.1 Lateral geniculate nucleus of the thalamus
  • 12.2.3 Secondary pathways
  • 12.2.3.1 Superior colliculus
  • 12.2.3.2 Pulvinar
  • 12.2.3.3 Suprachiasmatic nucleus
  • 12.2.3.4 Pretectum
  • 12.3 Visual cortex
  • 12.3.1 Geniculostriate pathway
  • 12.3.2 V1 and Maps
  • 12.3.2.1 Ocular dominance columns and parallel pathways
  • 12.3.3.2 Retinotopic map
  • 12.3.2.3 Measurement of retinotopic maps
  • 12.3.3 Multiple visual field maps: V1/V2/V3
  • 12.3.4 Map organization
  • 12.3.4.1 Dorsal/ventral streams
  • 12.3.4.2 Hierarchies and areas
  • 12.3.4.3 Clusters
  • 12.3.4.4 Diffusion imaging and tractography
  • 12.3.5 Functional measurements within maps and visual areas
  • 12.3.5.1 Population receptive fields
  • 12.3.5.2 Functional specialization within ventral maps and visual areas
  • 12.3.5.3 Functional specialization within lateral maps and visual areas
  • 12.3.5.4 Functional specialization within dorsal maps and visual areas
  • 12.3.6 Cortical plasticity and stability
  • 12.3.6.1 Plasticity and stability in early development
  • 12.3.6.2 Plasticity and stability in late development and adulthood
  • 12.4 Summary
  • Acknowledgments
  • References
  • 13. Visual psychophysical methods - Denis G. Pelli and Joshua A. Solomon
  • 13.1 Introduction
  • 13.2 Threshold
  • 13.3 Detecting a grating
  • 13.3.1 Forced-choice method: 2AFC
  • 13.3.2 Psychometric functions
  • 13.3.3 Contrast sensitivity function
  • 13.4 Identifying a letter
  • 13.4.1 Eye charts
  • 13.4.2 Acuity
  • 13.5 Classifying tilt
  • 13.5.1 Signal-detection theory
  • 13.5.2 The method of adjustment
  • 13.6 The relationship between visual optics, contrast sensitivity, and acuity
  • References
  • PART III OPTICAL PROPERTIES OF THE EYE
  • 14. The cornea - Michael Collins, Stephen Vincent, and Scott Read
  • 14.1 Introduction
  • 14.1.1 Corneal anatomy
  • 14.1.2 Corneal shape and dimensions
  • 14.1.3 Refractive indices of the cornea
  • 14.1.4 Transmission properties of the cornea
  • 14.1.5 Reference axes for the cornea
  • 14.2 Astigmatism of the cornea
  • 14.2.1 Corneal astigmatism
  • 14.2.2 Anterior and posterior corneal astigmatism
  • 14.2.3 Enantiomorphism and correlation of corneal astigmatism between eyes
  • 14.2.4 Impact of corneal astigmatism on vision
  • 14.2.5 Methods of astigmatism correction
  • 14.3 Higher-order aberrations of the cornea
  • 14.3.1 Zernike polynomials
  • 14.3.2 Spherical aberration
  • 14.3.3 Coma
  • 14.3.4 Correlation between eyes
  • 14.3.5 Higher-order aberrations in abnormal corneas
  • 14.3.6 Impact on vision and methods of correction
  • 14.4 Short-term changes in the optics of the cornea
  • 14.4.1 Diurnal changes
  • 14.4.2 Eyelid pressure
  • 14.4.3 Accommodation and convergence
  • 14.4.4 External forces
  • 14.4.5 Contact lenses
  • 14.5 Changes in corneal optics throughout life
  • 14.5.1 Shape of the cornea
  • 14.5.2 Astigmatism
  • 14.5.3 Higher-order aberrations
  • 14.5.4 Transparency
  • 14.6 Refractive error and corneal optics
  • 14.6.1 Emmetropization
  • 14.6.2 Spherical ametropia
  • 14.6.3 Anisometropia
  • 14.6.4 Presbyopia
  • 14.6.5 Amblyopia
  • 14.6.6 Imposed astigmatism in animals
  • 14.7 Conclusions
  • References
  • 15. The lens - Fabrice Manns, Arthur Ho, and Jean-Marie Parel
  • 15.1 Overview
  • 15.2 Basic anatomy of the lens
  • 15.2.1 Location of the lens inside the eye
  • 15.2.2 Lens anatomy
  • 15.2.2.1 Lens geometry
  • 15.2.2.2 Lens structure
  • 15.2.2.3 Cortex and nucleus
  • 15.3 Lens shape and dimensions
  • 15.3.1 In vivo measurement methods
  • 15.3.2 Optical techniques for in vivo lens biometry
  • 15.3.3 In vitro measurements of lens shape
  • 15.3.4 Biometric data
  • 15.3.4.1 Equatorial lens diameter
  • 15.3.4.2 Lens axial thickness
  • 15.3.4.3 Lens curvatures
  • 15.3.4.4 Lens asphericity
  • 15.4 Lens refractive index gradient
  • 15.4.1 Measurement of the lens refractive index
  • 15.4.2 Summary of values: Effects of age and accommodation
  • 15.5 Lens power
  • 15.5.1 Measurement of lens power in vivo
  • 15.5.1.1 Calculation from ocular biometry (Bennett method)
  • 15.5.1.2 Calculation from lens biometry—Equivalent index
  • 15.5.1.3 Comparison of methods
  • 15.5.2 Measurement of lens power in vitro
  • 15.5.3 Lens paradox
  • 15.6 Lens aberrations
  • References
  • 16. Schematic eyes - David A. Atchison
  • 16.1 Introduction
  • 16.2 A brief history of schematic eyes
  • 16.3 Gaussian properties
  • 16.3.1 Cardinal points and equivalent power
  • 16.3.2 Aperture stop and the entrance and exit pupils
  • 16.3.3 Effect of accommodation on cardinal points
  • 16.4 “Exact” paraxial schematic eyes
  • 16.4.1 Gullstrand number 1 (exact) eye
  • 16.4.2 Le Grand full theoretical eye
  • 16.5 Simplified paraxial schematic eyes
  • 16.5.1 Gullstrand–Emsley eye
  • 16.5.2 Bennett and Rabbetts simplified eye
  • 16.6 Reduced paraxial schematic eyes
  • 16.6.1 Emsley reduced eye (1952)
  • 16.7 Finite schematic eyes
  • 16.7.1 Modeling surface shapes
  • 16.7.2 Modeling refractive index distribution of the lens
  • 16.7.3 Modeling the retina
  • 16.7.4 Modeling chromatic dispersion
  • 16.7.5 Lotmar eye (1971)
  • 16.7.6 Kooijman eye (1983)
  • 16.7.7 Navarro eye (1985)
  • 16.7.8 Liou and Brennan eye (1997)
  • References
  • 17. Axes and angles of the eye - David A. Atchison
  • 17.1 Introduction
  • 17.2 Definitions and importance of axes
  • 17.2.1 Optical axis
  • 17.2.2 Line of sight
  • 17.2.3 Visual axis
  • 17.2.4 Pupillary axis
  • 17.2.5 Fixation axis
  • 17.2.6 Keratometric axis
  • 17.2.7 Achromatic axis
  • 17.2.8 Pupillary circular axis
  • 17.3 Locating axes
  • 17.3.1 Line of sight
  • 17.3.2 Visual axis
  • 17.3.3 Keratometric axis
  • 17.3.4 Pupillary circular axis
  • 17.4 Angles between axes
  • 17.4.1 Visual axis and optical axis: Angle alpha (α)
  • 17.4.2 Pupillary axis and line of sight: Angle lambda (λ)
  • 17.4.3 Pupillary axis and visual axis: Angle kappa (κ)
  • 17.4.4 Visual axis and achromatic axis: Angle psi (ψ)
  • 17.4.5 Fixation axis and optical axis: Angle gamma (γ)
  • 17.4.6 Line of sight and pupillary circular axis
  • References
  • 18. The retina and the Stiles–Crawford effects - Brian Vohnsen
  • 18.1 Retinal photoreceptor cones and rods
  • 18.2 Introduction to the Stiles–Crawford effects and retinal directionality
  • 18.3 Methods used to examine the Stiles–Crawford effects
  • 18.4 Experimental results and subjective variations
  • 18.5 Optical models of the photoreceptor cones
  • 18.5.1 Models of the SCE-I and the OSCE
  • 18.5.2 Models of the SCE-II
  • 18.6 Fitting functions for the Stiles–Crawford effects and the directionality parameter
  • 18.7 Visual implications of the Stiles–Crawford effects
  • 18.8 Physical models of the retina
  • 18.9 Retinal imaging implications of the Stiles–Crawford effects
  • 18.10 Conclusions
  • Acknowledgments
  • References
  • 19. Refractive errors - David A. Wilson
  • 19.1 Introduction
  • 19.2 Significance of refractive error
  • 19.2.1 Prevalence of ametropia
  • 19.2.2 Prevalence of presbyopia
  • 19.2.3 Prevalence of uncorrected refractive error
  • 19.3 Emmetropia
  • 19.4 Ametropia
  • 19.4.1 Myopia
  • 19.4.1.1 Effect of a pinhole
  • 19.4.2 Hypermetropia
  • 19.4.2.1 Effect of a pinhole
  • 19.4.3 Astigmatism
  • 19.4.3.1 Sturm's conoid
  • 19.4.3.2 Types of regular astigmatism
  • 19.4.4 Axial versus refractive ametropia
  • 19.5 Correction of ametropia
  • 19.5.1 Relative spectacle magnification
  • 19.5.2 Anisometropia
  • 19.6 Presbyopia
  • 19.7 Correction of presbyopia
  • 19.8 Concluding comments
  • References
  • 20. Monochromatic aberrations - Susana Marcos, Pablo Pérez-Merino, and Carlos Dorronsoro
  • 20.1 Introduction
  • 20.2 Ocular wave aberration
  • 20.2.1 Basic concepts in ocular aberrometry
  • 20.2.2 Measurement of monochromatic aberrations
  • 20.3 Monochromatic aberrations in the normal human eye
  • 20.3.1 Variation of aberrations in the population
  • 20.3.2 Monochromatic aberrations and aging
  • 20.3.3 Monochromatic aberrations and accommodation
  • 20.3.4 Monochromatic aberrations and refractive error
  • 20.3.5 Monochromatic aberrations and wavelength
  • 20.4 Monochromatic aberrations in pathology and treatment
  • 20.4.1 Monochromatic aberrations and refractive surgery
  • 20.4.2 Monochromatic aberrations and cataract surgery
  • 20.4.3 Monochromatic aberrations in keratoconus and its treatment
  • 20.4.4 Monochromatic aberrations and contact lenses
  • 20.5 Sources of monochromatic aberrations
  • 20.5.1 Interactions between ocular aberrations
  • 20.5.2 Relating ocular structure and monochromatic aberrations
  • 20.5.3 Impact of gradient refractive index on monochromatic aberrations
  • References
  • 21. Peripheral aberrations - Linda Lundström and Robert Rosén
  • 21.1 Introduction
  • 21.2 Peripheral optical errors
  • 21.2.1 Oblique astigmatism
  • 21.2.2 Defocus due to field curvature
  • 21.2.3 Coma
  • 21.2.4 Transverse chromatic aberration
  • 21.3 Measuring peripheral optics
  • 21.3.1 Traditional techniques: Subjective refraction and retinoscopy
  • 21.3.2 Foveal refractometers: Additional requirements for peripheral measurements
  • 21.3.3 Lab-based systems 1: The double-pass technique
  • 21.3.4 Lab-based systems 2: Wavefront sensing
  • 21.3.5 Future systems for complete image quality evaluation
  • 21.4 Population data on peripheral optical errors
  • 21.4.1 Refractive errors over the peripheral field and for different types of ametropia
  • 21.4.2 Wavefront aberrations over the peripheral visual field
  • 21.4.3 Image quality over the peripheral visual field
  • 21.4.4 Peripheral variations with age and accommodation
  • 21.5 Effect of peripheral optical errors on vision
  • 21.5.1 Optical effects on peripheral vision
  • 21.5.2 Application 1: Central visual field loss
  • 21.5.3 Application 2: Myopia development
  • References
  • 22. Customized eye models - Juan Tabernero
  • 22.1 Introduction
  • 22.2 Exact ray tracing
  • 22.3 Building a customized model
  • 22.3.1 The cornea
  • 22.3.2 The lens
  • 22.3.3 Axial distances
  • 22.3.4 Ocular alignment
  • 22.3.5 Validation
  • 22.4 Examples
  • 22.4.1 The effects of correcting the residual astigmatism
  • 22.4.2 The effects of correcting spherical aberration
  • 22.4.3 Extending depth of focus
  • References
  • 23. Scattering, straylight, and glare - Thomas J.T.P. van den Berg
  • 23.1 Introduction
  • 23.1.1 Disability glare and discomfort glare
  • 23.2 Assessment
  • 23.2.1 Equivalent luminance approaches
  • 23.2.2 Glare testing
  • 23.2.3 Optical measurements
  • 23.2.4 Forward versus backward scattering
  • 23.2.5 Light scattering ⇒ straylight ⇒ glare and quality of vision
  • 23.3 Physics
  • 23.3.1 Basic optics of scattering
  • 23.3.2 Sources of light scattering in the eye
  • 23.3.3 Physics of lenticular light scattering
  • 23.3.4 Ciliary corona
  • 23.3.5 Physics of corneal light scattering
  • 23.4 Straylight in normal eyes
  • 23.4.1 Normal population data collections
  • 23.4.2 Wavelength dependence issue
  • 23.5 Clinical straylight data
  • 23.5.1 Lens aging and cataract
  • 23.5.2 Pseudophakia
  • 23.5.3 Corneal conditions and refractive surgery
  • 23.5.4 Pigmentation insufficiencies
  • References
  • 24. Accommodation mechanisms - Shrikant R. Bharadwaj
  • 24.1 Introduction
  • 24.2 Anatomy and neurophysiology of accommodation
  • 24.3 Sensory cues for accommodation
  • 24.4 Modeling the interaction between blur and disparity cues to accommodation
  • 24.5 Cue conflicts and its influence on accommodation
  • 24.6 Conclusion
  • References
  • 25. Accommodation dynamics - Lyle S. Gray and Barry Winn
  • 25.1 Introduction
  • 25.1.1 Control of the accommodation response
  • 25.1.2 Accommodation step responses
  • 25.1.3 Steady-state response
  • 25.1.4 Detectability of accommodation microfluctuations
  • 25.1.5 Age-related changes in accommodation response
  • References
  • 26. Eye Movements - Andrew J. Anderson
  • 26.1 Introduction
  • 26.2 The need for eye movements
  • 26.2.1 Minimizing velocity blur: Gaze-holding eye movements
  • 26.2.2 Directing the fovea: Gaze-shifting eye movements
  • 26.2.3 Expanding the eye's limited field of view
  • 26.3 Gaze-holding eye movements
  • 26.3.1 Optokinesis
  • 26.3.2 Vestibular
  • 26.4 Gaze-shifting eye movements
  • 26.4.1 Saccades
  • 26.4.1.1 Ballistic nature
  • 26.4.1.2 Amplitude and velocity characteristics
  • 26.4.1.3 Latency and the notion of oculomotor procrastination
  • 26.4.1.4 Relationship between higher centers, superior colliculus, and brainstem
  • 26.4.1.5 Saccadic omission, suppression, timing reversal, and postsaccadic enhancement
  • 26.4.2 Smooth pursuit movements
  • 26.4.3 Vergence
  • 26.4.3.1 Stimuli for vergence
  • 26.4.3.2 Dynamics and limits
  • 26.5 Other
  • 26.5.1 Miniature eye movements
  • 26.6 Coordinating different eye movements
  • 26.7 Deciding where to direct our gaze
  • 26.7.1 Role of saliency
  • 26.7.2 Role of pattern and expectation
  • 26.8 Eye movements in vision science
  • 26.8.1 Allowing the eyes to move: Overt attention
  • 26.8.2 Keeping the eyes still
  • 26.9 Moving the eye: The extraocular muscles
  • References
  • 27. Aging and the eye's optics - W. Neil Charman
  • 27.1 Introduction
  • 27.2 Effects of age on the optical components of the eye
  • 27.2.1 Tear film
  • 27.2.2 Cornea
  • 27.2.3 Aqueous
  • 27.2.4 Pupil
  • 27.2.5 Lens
  • 27.2.6 Vitreous
  • 27.2.7 Axial length
  • 27.3 Effects in the complete eye
  • 27.3.1 Aberrations
  • 27.3.1.1 Chromatic aberrations
  • 27.3.1.2 Monochromatic aberrations
  • 27.3.2 Scattered light
  • 27.3.3 Overall ocular transmittance
  • 27.3.4 Changes in refraction
  • 27.3.5 Accommodation
  • 27.3.6 Overall on-axis retinal image quality
  • 27.4 Overall visual performance
  • References
  • 28. Polarization properties - Juan M. Bueno
  • 28.1 Overview of polarization concepts: Definitions and formalism
  • 28.2 Imaging polarimetry: Basis and applications
  • 28.3 Ocular polarization properties
  • 28.3.1 The cornea
  • 28.3.2 The lens
  • 28.3.3 The retina
  • 28.4 Clinical-oriented imaging polarimetry for ocular diagnosis
  • 28.5 Polarization-sensitive optical coherence tomography
  • 28.6 Improvement of ocular imaging through polarization
  • References