Handbook of Modern Sensors: Physics, Designs, and Applications
Handbook of Modern Sensors: Physics, Designs, and Applications
Editor/Author
Fraden, Jacob
Publication Year: 2016
Publisher: Springer Science+Business Media
Single-User Purchase Price:
$119.00

Unlimited-User Purchase Price:
Not Available
ISBN: 978-3-319-19302-1
Category: Technology & Engineering - Technology
Image Count:
523
Book Status: Available
Table of Contents
This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications.
This book is found in the following Credo Collections:
Table of Contents
- Preface
- About the Author
- 1 Data Acquisition
- 1.1 Sensors, Signals, and Systems
- 1.2 Sensor Classification
- 1.3 Units of Measurements
- References
- 2 Transfer Functions
- 2.1 Mathematical Models
- 2.1.1 Concept
- 2.1.2 Functional Approximations
- 2.1.3 Linear Regression
- 2.1.4 Polynomial Approximations
- 2.1.5 Sensitivity
- 2.1.6 Linear Piecewise Approximation
- 2.1.7 Spline Interpolation
- 2.1.8 Multidimensional Transfer Functions
- 2.2 Calibration
- 2.3 Computation of Parameters
- 2.4 Computation of a Stimulus
- 2.4.1 Use of Analytical Equation
- 2.4.2 Use of Linear Piecewise Approximation
- 2.4.3 Iterative Computation of Stimulus (Newton Method)
- References
- 3 Sensor Characteristics
- 3.1 Sensors for Mobile Communication Devices
- 3.1.1 Requirements to MCD Sensors
- 3.1.2 Integration
- 3.2 Span (Full-Scale Input)
- 3.3 Full-Scale Output
- 3.4 Accuracy
- 3.5 Calibration Error
- 3.6 Hysteresis
- 3.7 Nonlinearity
- 3.8 Saturation
- 3.9 Repeatability
- 3.10 Dead Band
- 3.11 Resolution
- 3.12 Special Properties
- 3.13 Output Impedance
- 3.14 Output Format
- 3.15 Excitation
- 3.16 Dynamic Characteristics
- 3.17 Dynamic Models of Sensor Elements
- 3.17.1 Mechanical Elements
- 3.17.2 Thermal Elements
- 3.17.3 Electrical Elements
- 3.17.4 Analogies
- 3.18 Environmental Factors
- 3.19 Reliability
- 3.19.1 MTTF
- 3.19.2 Extreme Testing
- 3.19.3 Accelerated Life Testing
- 3.20 Application Characteristics
- 3.21 Uncertainty
- References
- 4 Physical Principles of Sensing
- 4.1 Electric Charges, Fields, and Potentials
- 4.2 Capacitance
- 4.2.1 Capacitor
- 4.2.2 Dielectric Constant
- 4.3 Magnetism
- 4.3.1 Faraday Law
- 4.3.2 Permanent Magnets
- 4.3.3 Coil and Solenoid
- 4.4 Induction
- 4.4.1 Lenz Law
- 4.4.2 Eddy Currents
- 4.5 Resistance
- 4.5.1 Specific Resistivity
- 4.5.2 Temperature Sensitivity of a Resistor
- 4.5.3 Strain Sensitivity of a Resistor
- 4.5.4 Moisture Sensitivity of a Resistor
- 4.6 Piezoelectric Effect
- 4.6.1 Ceramic Piezoelectric Materials
- 4.6.2 Polymer Piezoelectric Films
- 4.7 Pyroelectric Effect
- 4.8 Hall Effect
- 4.9 Thermoelectric Effects
- 4.9.1 Seebeck Effect
- 4.9.2 Peltier Effect
- 4.10 Sound Waves
- 4.11 Temperature and Thermal Properties of Materials
- 4.11.1 Temperature Scales
- 4.11.2 Thermal Expansion
- 4.11.3 Heat Capacity
- 4.12 Heat Transfer
- 4.12.1 Thermal Conduction
- 4.12.2 Thermal Convection
- 4.12.3 Thermal Radiation
- References
- 5 Optical Components of Sensors
- 5.1 Light
- 5.1.1 Energy of Light Quanta
- 5.1.2 Light Polarization
- 5.2 Light Scattering
- 5.3 Geometrical Optics
- 5.4 Radiometry
- 5.5 Photometry
- 5.6 Windows
- 5.7 Mirrors
- 5.7.1 Coated Mirrors
- 5.7.2 Prismatic Mirrors
- 5.8 Lenses
- 5.8.1 Curved Surface Lenses
- 5.8.2 Fresnel Lenses
- 5.8.3 Flat Nanolenses
- 5.9 Fiber Optics and Waveguides
- 5.10 Optical Efficiency
- 5.10.1 Lensing Effect
- 5.10.2 Concentrators
- 5.10.3 Coatings for Thermal Absorption
- 5.10.4 Antireflective Coating (ARC)
- References
- 6 Interface Electronic Circuits
- 6.1 Signal Conditioners
- 6.1.1 Input Characteristics
- 6.1.2 Amplifiers
- 6.1.3 Operational Amplifiers
- 6.1.4 Voltage Follower
- 6.1.5 Charge- and Current-to-Voltage Converters
- 6.1.6 Light-to-Voltage Converters
- 6.1.7 Capacitance-to-Voltage Converters
- 6.1.8 Closed-Loop Capacitance-to-Voltage Converters
- 6.2 Sensor Connections
- 6.2.1 Ratiometric Circuits
- 6.2.2 Differential Circuits
- 6.2.3 Wheatstone Bridge
- 6.2.4 Null-Balanced Bridge
- 6.2.5 Bridge Amplifiers
- 6.3 Excitation Circuits
- 6.3.1 Current Generators
- 6.3.2 Voltage Generators
- 6.3.3 Voltage References
- 6.3.4 Oscillators
- 6.4 Analog-to-Digital Converters
- 6.4.1 Basic Concepts
- 6.4.2 V/F Converters
- 6.4.3 PWM Converters
- 6.4.4 R/F Converters
- 6.4.5 Successive-Approximation Converter
- 6.4.6 Resolution Extension
- 6.4.7 ADC Interface
- 6.5 Integrated Interfaces
- 6.5.1 Voltage Processor
- 6.5.2 Inductance Processor
- 6.6 Data Transmission
- 6.6.1 Two-Wire Transmission
- 6.6.2 Four-Wire Transmission
- 6.7 Noise in Sensors and Circuits
- 6.7.1 Inherent Noise
- 6.7.2 Transmitted Noise
- 6.7.3 Electric Shielding
- 6.7.4 Bypass Capacitors
- 6.7.5 Magnetic Shielding
- 6.7.6 Mechanical Noise
- 6.7.7 Ground Planes
- 6.7.8 Ground Loops and Ground Isolation
- 6.7.9 Seebeck Noise
- 6.8 Batteries for Low-Power Sensors
- 6.8.1 Primary Cells
- 6.8.2 Secondary Cells
- 6.8.3 Supercapacitors
- 6.9 Energy Harvesting
- 6.9.1 Light Energy Harvesting
- 6.9.2 Far-Field Energy Harvesting
- 6.9.3 Near-Field Energy Harvesting
- References
- 7 Detectors of Humans
- 7.1 Ultrasonic Detectors
- 7.2 Microwave Motion Detectors
- 7.3 Micropower Impulse Radars
- 7.4 Ground Penetrating Radars
- 7.5 Linear Optical Sensors (PSD)
- 7.6 Capacitive Occupancy Detectors
- 7.7 Triboelectric Detectors
- 7.8 Optoelectronic Motion Detectors
- 7.8.1 Sensor Structures
- 7.8.2 Multiple Detecting Elements
- 7.8.3 Complex Sensor Shape
- 7.8.4 Image Distortion
- 7.8.5 Facet Focusing Elements
- 7.8.6 Visible and Near-IR Light Motion Detectors
- 7.8.7 Mid- and Far-IR Detectors
- 7.8.8 Passive Infrared (PIR) Motion Detectors
- 7.8.9 PIR Detector Efficiency Analysis
- 7.9 Optical Presence Sensors
- 7.9.1 Photoelectric Beam
- 7.9.2 Light Reflection Detectors
- 7.10 Pressure-Gradient Sensors
- 7.11 2-D Pointing Devices
- 7.12 Gesture Sensing (3-D Pointing)
- 7.12.1 Inertial and Gyroscopic Mice
- 7.12.2 Optical Gesture Sensors
- 7.12.3 Near-Field Gesture Sensors
- 7.13 Tactile Sensors
- 7.13.1 Switch Sensors
- 7.13.2 Piezoelectric Tactile Sensors
- 7.13.3 Piezoresistive Tactile Sensors
- 7.13.4 Tactile MEMS Sensors
- 7.13.5 Capacitive Touch Sensors
- 7.13.6 Optical Touch Sensors
- 7.13.7 Optical Fingerprint Sensors
- References
- 8 Presence, Displacement, and Level
- 8.1 Potentiometric Sensors
- 8.2 Piezoresistive Sensors
- 8.3 Capacitive Sensors
- 8.4 Inductive and Magnetic Sensors
- 8.4.1 LVDT and RVDT
- 8.4.2 Transverse Inductive Sensor
- 8.4.3 Eddy Current Probes
- 8.4.4 Pavement Loops
- 8.4.5 Metal Detectors
- 8.4.6 Hall-Effect Sensors
- 8.4.7 Magnetoresistive Sensors
- 8.4.8 Magnetostrictive Detector
- 8.5 Optical Sensors
- 8.5.1 Optical Bridge
- 8.5.2 Proximity Detector with Polarized Light
- 8.5.3 Prismatic and Reflective Sensors
- 8.5.4 Fabry-Perot Sensors
- 8.5.5 Fiber Bragg Grating Sensors
- 8.5.6 Grating Photomodulators
- 8.6 Thickness and Level Sensors
- 8.6.1 Ablation Sensors
- 8.6.2 Film Sensors
- 8.6.3 Cryogenic Liquid Level Sensors
- References
- 9 velocity and acceleration
- 9.1 stationary velocity sensors
- 9.1.1 Linear Velocity
- 9.1.2 Rotary Velocity Sensors (Tachometers)
- 9.2 Inertial Rotary Sensors
- 9.2.1 Rotor Gyroscope
- 9.2.2 Vibrating Gyroscopes
- 9.2.3 Optical (Laser) Gyroscopes
- 9.3 Inertial Linear Sensors (Accelerometers)
- 9.3.1 Transfer Function and Characteristics
- 9.3.2 Inclinometers
- 9.3.3 Seismic Sensors
- 9.3.4 Capacitive Accelerometers
- 9.3.5 Piezoresistive Accelerometers
- 9.3.6 Piezoelectric Accelerometers
- 9.3.7 Thermal Accelerometers
- 9.3.8 Closed-Loop Accelerometers
- References
- 10 Force and Strain
- 10.1 Basic Considerations
- 10.2 Strain Gauges
- 10.3 Pressure-Sensitive Films
- 10.4 Piezoelectric Force Sensors
- 10.5 Piezoelectric Cables
- 10.6 Optical Force Sensors
- References
- 11 Pressure Sensors
- 11.1 Concept of Pressure
- 11.2 Units of Pressure
- 11.3 Mercury Pressure Sensor
- 11.4 Bellows, Membranes, and Thin Plates
- 11.5 Piezoresistive Sensors
- 11.6 Capacitive Sensors
- 11.7 VRP Sensors
- 11.8 Optoelectronic Pressure Sensors
- 11.9 Indirect Pressure Sensor
- 11.10 Vacuum Sensors
- 11.10.1 Pirani Gauge
- 11.10.2 Ionization Gauges
- 11.10.3 Gas Drag Gauge
- References
- 12 Flow Sensors
- 12.1 Basics of Flow Dynamics
- 12.2 Pressure Gradient Technique
- 12.3 Thermal Transport Sensors
- 12.3.1 Hot-Wire Anemometers
- 12.3.2 Three-Part Thermoanemometer
- 12.3.3 Two-Part Thermoanemometer
- 12.3.4 Microflow Thermal Transport Sensors
- 12.4 Ultrasonic Sensors
- 12.5 Electromagnetic Sensors
- 12.6 Breeze Sensor
- 12.7 Coriolis Mass Flow Sensors
- 12.8 Drag Force Flowmeter
- 12.9 Cantilever MEMS Sensors
- 12.10 Dust and Smoke Detectors
- 12.10.1 Ionization Detector
- 12.10.2 Optical Detector
- References
- 13 Microphones
- 13.1 Microphone Characteristics
- 13.1.1 Output Impedance
- 13.1.2 Balanced Output
- 13.1.3 Sensitivity
- 13.1.4 Frequency Response
- 13.1.5 Intrinsic Noise
- 13.1.6 Directionality
- 13.1.7 Proximity Effect
- 13.2 Resistive Microphones
- 13.3 Condenser Microphones
- 13.4 Electret Microphones
- 13.5 Optical Microphones
- 13.6 Piezoelectric Microphones
- 13.6.1 Low-Frequency Range
- 13.6.2 Ultrasonic Range
- 13.7 Dynamic Microphones
- References
- 14 Humidity and Moisture Sensors
- 14.1 Concept of Humidity
- 14.2 Sensor Concepts
- 14.3 Capacitive Humidity Sensors
- 14.4 Resistive Humidity Sensors
- 14.5 Thermal Conductivity Sensor
- 14.6 Optical Hygrometers
- 14.6.1 Chilled Mirror
- 14.6.2 Light RH Sensors
- 14.7 Oscillating Hygrometer
- 14.8 Soil Moisture
- References
- 15 Light Detectors
- 15.1 Introduction
- 15.1.1 Principle of Quantum Detectors
- 15.2 Photodiode
- 15.3 Phototransistor
- 15.4 Photoresistor
- 15.5 Cooled Detectors
- 15.6 Imaging Sensors for Visible Range
- 15.6.1 CCD Sensor
- 15.6.2 CMOS Imaging Sensors
- 15.7 UV Detectors
- 15.7.1 Materials and Designs
- 15.7.2 Avalanche UV Detectors
- 15.8 Thermal Radiation Detectors
- 15.8.1 General Considerations
- 15.8.2 Golay Cells
- 15.8.3 Thermopiles
- 15.8.4 Pyroelectric Sensors
- 15.8.5 Microbolometers
- References
- 16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation
- 16.1 Scintillating Detectors
- 16.2 Ionization Detectors
- 16.2.1 Ionization Chambers
- 16.2.2 Proportional Chambers
- 16.2.3 Geiger–Müller (GM) Counters
- 16.2.4 Semiconductor Detectors
- 16.3 Cloud and Bubble Chambers
- References
- 17 Temperature Sensors
- 17.1 Coupling with Object
- 17.1.1 Static Heat Exchange
- 17.1.2 Dynamic Heat Exchange
- 17.1.3 Sensor Structure
- 17.1.4 Signal Processing of Sensor Response
- 17.2 Temperature References
- 17.3 Resistance Temperature Detectors (RTD)
- 17.4 Ceramic Thermistors
- 17.4.1 Simple Model
- 17.4.2 Fraden Model
- 17.4.3 Steinhart and Hart Model
- 17.4.4 Self-Heating Effect in NTC Thermistors
- 17.4.5 Ceramic PTC Thermistors
- 17.4.6 Fabrication
- 17.5 Silicon and Germanium Thermistors
- 17.6 Semiconductor pn-Junction Sensors
- 17.7 Silicon PTC Temperature Sensors
- 17.8 Thermoelectric Sensors
- 17.8.1 Thermoelectric Laws
- 17.8.2 Thermocouple Circuits
- 17.8.3 Thermocouple Assemblies
- 17.9 Optical Temperature Sensors
- 17.9.1 Fluoroptic Sensors
- 17.9.2 Interferometric Sensors
- 17.9.3 Super-High Resolution Sensing
- 17.9.4 Thermochromic Sensors
- 17.9.5 Fiber-Optic Temperature Sensors (FBG)
- 17.10 Acoustic Temperature Sensors
- 17.11 Piezoelectric Temperature Sensors
- References
- 18 Chemical and Biological Sensors
- 18.1 Overview
- 18.1.1 Chemical Sensors
- 18.1.2 Biochemical Sensors
- 18.2 History
- 18.3 Chemical Sensor Characteristics
- 18.3.1 Selectivity
- 18.3.2 Sensitivity
- 18.4 Electrical and Electrochemical Sensors
- 18.4.1 Electrode Systems
- 18.4.2 Potentiometric Sensors
- 18.4.3 Conductometric Sensors
- 18.4.4 Metal Oxide Semiconductor (MOS) Chemical Sensors
- 18.4.5 Elastomer Chemiresistors
- 18.4.6 Chemicapacitive Sensors
- 18.4.7 ChemFET
- 18.5 Photoionization Detectors
- 18.6 Physical Transducers
- 18.6.1 Acoustic Wave Devices
- 18.6.2 Microcantilevers
- 18.7 Spectrometers
- 18.7.1 Ion Mobility Spectrometry
- 18.7.2 Quadrupole Mass Spectrometer
- 18.8 Thermal Sensors
- 18.8.1 Concept
- 18.8.2 Pellister Catalytic Sensors
- 18.9 Optical Transducers
- 18.9.1 Infrared Detection
- 18.9.2 Fiber-Optic Transducers
- 18.9.3 Ratiometric Selectivity (Pulse Oximeter)
- 18.9.4 Color Change Sensors
- 18.10 Multi-sensor Arrays
- 18.10.1 General Considerations
- 18.10.2 Electronic Noses and Tongues
- 18.11 Specific Difficulties
- References
- 19 Materials and Technologies
- 19.1 Materials
- 19.1.1 Silicon as Sensing Material
- 19.1.2 Plastics
- 19.1.3 Metals
- 19.1.4 Ceramics
- 19.1.5 Structural Glasses
- 19.1.6 Optical Glasses
- 19.2 Nano-materials
- 19.3 Surface Processing
- 19.3.1 Spin Casting
- 19.3.2 Vacuum Deposition
- 19.3.3 Sputtering
- 19.3.4 Chemical Vapor Deposition (CVD)
- 19.3.5 Electroplating
- 19.4 MEMS Technologies
- 19.4.1 Photolithography
- 19.4.2 Silicon Micromachining
- 19.4.3 Micromachining of Bridges and Cantilevers
- 19.4.4 Lift-Off
- 19.4.5 Wafer Bonding
- 19.4.6 LIGA
- References
- Appendix