Handbook of Modern Sensors: Physics, Designs, and Applications

Editor/Author Fraden, Jacob
Publication Year: 2016
Publisher: Springer Science+Business Media

Single-User Purchase Price: $119.00
Unlimited-User Purchase Price: Not Available
ISBN: 978-3-319-19302-1
Category: Technology & Engineering - Technology
Image Count: 523
Book Status: Available
Table of Contents

This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications.

Share this

This book is found in the following Credo Collections:

Table of Contents

  • Preface
  • About the Author
  • 1 Data Acquisition
  • 1.1 Sensors, Signals, and Systems
  • 1.2 Sensor Classification
  • 1.3 Units of Measurements
  • References
  • 2 Transfer Functions
  • 2.1 Mathematical Models
  • 2.1.1 Concept
  • 2.1.2 Functional Approximations
  • 2.1.3 Linear Regression
  • 2.1.4 Polynomial Approximations
  • 2.1.5 Sensitivity
  • 2.1.6 Linear Piecewise Approximation
  • 2.1.7 Spline Interpolation
  • 2.1.8 Multidimensional Transfer Functions
  • 2.2 Calibration
  • 2.3 Computation of Parameters
  • 2.4 Computation of a Stimulus
  • 2.4.1 Use of Analytical Equation
  • 2.4.2 Use of Linear Piecewise Approximation
  • 2.4.3 Iterative Computation of Stimulus (Newton Method)
  • References
  • 3 Sensor Characteristics
  • 3.1 Sensors for Mobile Communication Devices
  • 3.1.1 Requirements to MCD Sensors
  • 3.1.2 Integration
  • 3.2 Span (Full-Scale Input)
  • 3.3 Full-Scale Output
  • 3.4 Accuracy
  • 3.5 Calibration Error
  • 3.6 Hysteresis
  • 3.7 Nonlinearity
  • 3.8 Saturation
  • 3.9 Repeatability
  • 3.10 Dead Band
  • 3.11 Resolution
  • 3.12 Special Properties
  • 3.13 Output Impedance
  • 3.14 Output Format
  • 3.15 Excitation
  • 3.16 Dynamic Characteristics
  • 3.17 Dynamic Models of Sensor Elements
  • 3.17.1 Mechanical Elements
  • 3.17.2 Thermal Elements
  • 3.17.3 Electrical Elements
  • 3.17.4 Analogies
  • 3.18 Environmental Factors
  • 3.19 Reliability
  • 3.19.1 MTTF
  • 3.19.2 Extreme Testing
  • 3.19.3 Accelerated Life Testing
  • 3.20 Application Characteristics
  • 3.21 Uncertainty
  • References
  • 4 Physical Principles of Sensing
  • 4.1 Electric Charges, Fields, and Potentials
  • 4.2 Capacitance
  • 4.2.1 Capacitor
  • 4.2.2 Dielectric Constant
  • 4.3 Magnetism
  • 4.3.1 Faraday Law
  • 4.3.2 Permanent Magnets
  • 4.3.3 Coil and Solenoid
  • 4.4 Induction
  • 4.4.1 Lenz Law
  • 4.4.2 Eddy Currents
  • 4.5 Resistance
  • 4.5.1 Specific Resistivity
  • 4.5.2 Temperature Sensitivity of a Resistor
  • 4.5.3 Strain Sensitivity of a Resistor
  • 4.5.4 Moisture Sensitivity of a Resistor
  • 4.6 Piezoelectric Effect
  • 4.6.1 Ceramic Piezoelectric Materials
  • 4.6.2 Polymer Piezoelectric Films
  • 4.7 Pyroelectric Effect
  • 4.8 Hall Effect
  • 4.9 Thermoelectric Effects
  • 4.9.1 Seebeck Effect
  • 4.9.2 Peltier Effect
  • 4.10 Sound Waves
  • 4.11 Temperature and Thermal Properties of Materials
  • 4.11.1 Temperature Scales
  • 4.11.2 Thermal Expansion
  • 4.11.3 Heat Capacity
  • 4.12 Heat Transfer
  • 4.12.1 Thermal Conduction
  • 4.12.2 Thermal Convection
  • 4.12.3 Thermal Radiation
  • References
  • 5 Optical Components of Sensors
  • 5.1 Light
  • 5.1.1 Energy of Light Quanta
  • 5.1.2 Light Polarization
  • 5.2 Light Scattering
  • 5.3 Geometrical Optics
  • 5.4 Radiometry
  • 5.5 Photometry
  • 5.6 Windows
  • 5.7 Mirrors
  • 5.7.1 Coated Mirrors
  • 5.7.2 Prismatic Mirrors
  • 5.8 Lenses
  • 5.8.1 Curved Surface Lenses
  • 5.8.2 Fresnel Lenses
  • 5.8.3 Flat Nanolenses
  • 5.9 Fiber Optics and Waveguides
  • 5.10 Optical Efficiency
  • 5.10.1 Lensing Effect
  • 5.10.2 Concentrators
  • 5.10.3 Coatings for Thermal Absorption
  • 5.10.4 Antireflective Coating (ARC)
  • References
  • 6 Interface Electronic Circuits
  • 6.1 Signal Conditioners
  • 6.1.1 Input Characteristics
  • 6.1.2 Amplifiers
  • 6.1.3 Operational Amplifiers
  • 6.1.4 Voltage Follower
  • 6.1.5 Charge- and Current-to-Voltage Converters
  • 6.1.6 Light-to-Voltage Converters
  • 6.1.7 Capacitance-to-Voltage Converters
  • 6.1.8 Closed-Loop Capacitance-to-Voltage Converters
  • 6.2 Sensor Connections
  • 6.2.1 Ratiometric Circuits
  • 6.2.2 Differential Circuits
  • 6.2.3 Wheatstone Bridge
  • 6.2.4 Null-Balanced Bridge
  • 6.2.5 Bridge Amplifiers
  • 6.3 Excitation Circuits
  • 6.3.1 Current Generators
  • 6.3.2 Voltage Generators
  • 6.3.3 Voltage References
  • 6.3.4 Oscillators
  • 6.4 Analog-to-Digital Converters
  • 6.4.1 Basic Concepts
  • 6.4.2 V/F Converters
  • 6.4.3 PWM Converters
  • 6.4.4 R/F Converters
  • 6.4.5 Successive-Approximation Converter
  • 6.4.6 Resolution Extension
  • 6.4.7 ADC Interface
  • 6.5 Integrated Interfaces
  • 6.5.1 Voltage Processor
  • 6.5.2 Inductance Processor
  • 6.6 Data Transmission
  • 6.6.1 Two-Wire Transmission
  • 6.6.2 Four-Wire Transmission
  • 6.7 Noise in Sensors and Circuits
  • 6.7.1 Inherent Noise
  • 6.7.2 Transmitted Noise
  • 6.7.3 Electric Shielding
  • 6.7.4 Bypass Capacitors
  • 6.7.5 Magnetic Shielding
  • 6.7.6 Mechanical Noise
  • 6.7.7 Ground Planes
  • 6.7.8 Ground Loops and Ground Isolation
  • 6.7.9 Seebeck Noise
  • 6.8 Batteries for Low-Power Sensors
  • 6.8.1 Primary Cells
  • 6.8.2 Secondary Cells
  • 6.8.3 Supercapacitors
  • 6.9 Energy Harvesting
  • 6.9.1 Light Energy Harvesting
  • 6.9.2 Far-Field Energy Harvesting
  • 6.9.3 Near-Field Energy Harvesting
  • References
  • 7 Detectors of Humans
  • 7.1 Ultrasonic Detectors
  • 7.2 Microwave Motion Detectors
  • 7.3 Micropower Impulse Radars
  • 7.4 Ground Penetrating Radars
  • 7.5 Linear Optical Sensors (PSD)
  • 7.6 Capacitive Occupancy Detectors
  • 7.7 Triboelectric Detectors
  • 7.8 Optoelectronic Motion Detectors
  • 7.8.1 Sensor Structures
  • 7.8.2 Multiple Detecting Elements
  • 7.8.3 Complex Sensor Shape
  • 7.8.4 Image Distortion
  • 7.8.5 Facet Focusing Elements
  • 7.8.6 Visible and Near-IR Light Motion Detectors
  • 7.8.7 Mid- and Far-IR Detectors
  • 7.8.8 Passive Infrared (PIR) Motion Detectors
  • 7.8.9 PIR Detector Efficiency Analysis
  • 7.9 Optical Presence Sensors
  • 7.9.1 Photoelectric Beam
  • 7.9.2 Light Reflection Detectors
  • 7.10 Pressure-Gradient Sensors
  • 7.11 2-D Pointing Devices
  • 7.12 Gesture Sensing (3-D Pointing)
  • 7.12.1 Inertial and Gyroscopic Mice
  • 7.12.2 Optical Gesture Sensors
  • 7.12.3 Near-Field Gesture Sensors
  • 7.13 Tactile Sensors
  • 7.13.1 Switch Sensors
  • 7.13.2 Piezoelectric Tactile Sensors
  • 7.13.3 Piezoresistive Tactile Sensors
  • 7.13.4 Tactile MEMS Sensors
  • 7.13.5 Capacitive Touch Sensors
  • 7.13.6 Optical Touch Sensors
  • 7.13.7 Optical Fingerprint Sensors
  • References
  • 8 Presence, Displacement, and Level
  • 8.1 Potentiometric Sensors
  • 8.2 Piezoresistive Sensors
  • 8.3 Capacitive Sensors
  • 8.4 Inductive and Magnetic Sensors
  • 8.4.1 LVDT and RVDT
  • 8.4.2 Transverse Inductive Sensor
  • 8.4.3 Eddy Current Probes
  • 8.4.4 Pavement Loops
  • 8.4.5 Metal Detectors
  • 8.4.6 Hall-Effect Sensors
  • 8.4.7 Magnetoresistive Sensors
  • 8.4.8 Magnetostrictive Detector
  • 8.5 Optical Sensors
  • 8.5.1 Optical Bridge
  • 8.5.2 Proximity Detector with Polarized Light
  • 8.5.3 Prismatic and Reflective Sensors
  • 8.5.4 Fabry-Perot Sensors
  • 8.5.5 Fiber Bragg Grating Sensors
  • 8.5.6 Grating Photomodulators
  • 8.6 Thickness and Level Sensors
  • 8.6.1 Ablation Sensors
  • 8.6.2 Film Sensors
  • 8.6.3 Cryogenic Liquid Level Sensors
  • References
  • 9 velocity and acceleration
  • 9.1 stationary velocity sensors
  • 9.1.1 Linear Velocity
  • 9.1.2 Rotary Velocity Sensors (Tachometers)
  • 9.2 Inertial Rotary Sensors
  • 9.2.1 Rotor Gyroscope
  • 9.2.2 Vibrating Gyroscopes
  • 9.2.3 Optical (Laser) Gyroscopes
  • 9.3 Inertial Linear Sensors (Accelerometers)
  • 9.3.1 Transfer Function and Characteristics
  • 9.3.2 Inclinometers
  • 9.3.3 Seismic Sensors
  • 9.3.4 Capacitive Accelerometers
  • 9.3.5 Piezoresistive Accelerometers
  • 9.3.6 Piezoelectric Accelerometers
  • 9.3.7 Thermal Accelerometers
  • 9.3.8 Closed-Loop Accelerometers
  • References
  • 10 Force and Strain
  • 10.1 Basic Considerations
  • 10.2 Strain Gauges
  • 10.3 Pressure-Sensitive Films
  • 10.4 Piezoelectric Force Sensors
  • 10.5 Piezoelectric Cables
  • 10.6 Optical Force Sensors
  • References
  • 11 Pressure Sensors
  • 11.1 Concept of Pressure
  • 11.2 Units of Pressure
  • 11.3 Mercury Pressure Sensor
  • 11.4 Bellows, Membranes, and Thin Plates
  • 11.5 Piezoresistive Sensors
  • 11.6 Capacitive Sensors
  • 11.7 VRP Sensors
  • 11.8 Optoelectronic Pressure Sensors
  • 11.9 Indirect Pressure Sensor
  • 11.10 Vacuum Sensors
  • 11.10.1 Pirani Gauge
  • 11.10.2 Ionization Gauges
  • 11.10.3 Gas Drag Gauge
  • References
  • 12 Flow Sensors
  • 12.1 Basics of Flow Dynamics
  • 12.2 Pressure Gradient Technique
  • 12.3 Thermal Transport Sensors
  • 12.3.1 Hot-Wire Anemometers
  • 12.3.2 Three-Part Thermoanemometer
  • 12.3.3 Two-Part Thermoanemometer
  • 12.3.4 Microflow Thermal Transport Sensors
  • 12.4 Ultrasonic Sensors
  • 12.5 Electromagnetic Sensors
  • 12.6 Breeze Sensor
  • 12.7 Coriolis Mass Flow Sensors
  • 12.8 Drag Force Flowmeter
  • 12.9 Cantilever MEMS Sensors
  • 12.10 Dust and Smoke Detectors
  • 12.10.1 Ionization Detector
  • 12.10.2 Optical Detector
  • References
  • 13 Microphones
  • 13.1 Microphone Characteristics
  • 13.1.1 Output Impedance
  • 13.1.2 Balanced Output
  • 13.1.3 Sensitivity
  • 13.1.4 Frequency Response
  • 13.1.5 Intrinsic Noise
  • 13.1.6 Directionality
  • 13.1.7 Proximity Effect
  • 13.2 Resistive Microphones
  • 13.3 Condenser Microphones
  • 13.4 Electret Microphones
  • 13.5 Optical Microphones
  • 13.6 Piezoelectric Microphones
  • 13.6.1 Low-Frequency Range
  • 13.6.2 Ultrasonic Range
  • 13.7 Dynamic Microphones
  • References
  • 14 Humidity and Moisture Sensors
  • 14.1 Concept of Humidity
  • 14.2 Sensor Concepts
  • 14.3 Capacitive Humidity Sensors
  • 14.4 Resistive Humidity Sensors
  • 14.5 Thermal Conductivity Sensor
  • 14.6 Optical Hygrometers
  • 14.6.1 Chilled Mirror
  • 14.6.2 Light RH Sensors
  • 14.7 Oscillating Hygrometer
  • 14.8 Soil Moisture
  • References
  • 15 Light Detectors
  • 15.1 Introduction
  • 15.1.1 Principle of Quantum Detectors
  • 15.2 Photodiode
  • 15.3 Phototransistor
  • 15.4 Photoresistor
  • 15.5 Cooled Detectors
  • 15.6 Imaging Sensors for Visible Range
  • 15.6.1 CCD Sensor
  • 15.6.2 CMOS Imaging Sensors
  • 15.7 UV Detectors
  • 15.7.1 Materials and Designs
  • 15.7.2 Avalanche UV Detectors
  • 15.8 Thermal Radiation Detectors
  • 15.8.1 General Considerations
  • 15.8.2 Golay Cells
  • 15.8.3 Thermopiles
  • 15.8.4 Pyroelectric Sensors
  • 15.8.5 Microbolometers
  • References
  • 16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation
  • 16.1 Scintillating Detectors
  • 16.2 Ionization Detectors
  • 16.2.1 Ionization Chambers
  • 16.2.2 Proportional Chambers
  • 16.2.3 Geiger–Müller (GM) Counters
  • 16.2.4 Semiconductor Detectors
  • 16.3 Cloud and Bubble Chambers
  • References
  • 17 Temperature Sensors
  • 17.1 Coupling with Object
  • 17.1.1 Static Heat Exchange
  • 17.1.2 Dynamic Heat Exchange
  • 17.1.3 Sensor Structure
  • 17.1.4 Signal Processing of Sensor Response
  • 17.2 Temperature References
  • 17.3 Resistance Temperature Detectors (RTD)
  • 17.4 Ceramic Thermistors
  • 17.4.1 Simple Model
  • 17.4.2 Fraden Model
  • 17.4.3 Steinhart and Hart Model
  • 17.4.4 Self-Heating Effect in NTC Thermistors
  • 17.4.5 Ceramic PTC Thermistors
  • 17.4.6 Fabrication
  • 17.5 Silicon and Germanium Thermistors
  • 17.6 Semiconductor pn-Junction Sensors
  • 17.7 Silicon PTC Temperature Sensors
  • 17.8 Thermoelectric Sensors
  • 17.8.1 Thermoelectric Laws
  • 17.8.2 Thermocouple Circuits
  • 17.8.3 Thermocouple Assemblies
  • 17.9 Optical Temperature Sensors
  • 17.9.1 Fluoroptic Sensors
  • 17.9.2 Interferometric Sensors
  • 17.9.3 Super-High Resolution Sensing
  • 17.9.4 Thermochromic Sensors
  • 17.9.5 Fiber-Optic Temperature Sensors (FBG)
  • 17.10 Acoustic Temperature Sensors
  • 17.11 Piezoelectric Temperature Sensors
  • References
  • 18 Chemical and Biological Sensors
  • 18.1 Overview
  • 18.1.1 Chemical Sensors
  • 18.1.2 Biochemical Sensors
  • 18.2 History
  • 18.3 Chemical Sensor Characteristics
  • 18.3.1 Selectivity
  • 18.3.2 Sensitivity
  • 18.4 Electrical and Electrochemical Sensors
  • 18.4.1 Electrode Systems
  • 18.4.2 Potentiometric Sensors
  • 18.4.3 Conductometric Sensors
  • 18.4.4 Metal Oxide Semiconductor (MOS) Chemical Sensors
  • 18.4.5 Elastomer Chemiresistors
  • 18.4.6 Chemicapacitive Sensors
  • 18.4.7 ChemFET
  • 18.5 Photoionization Detectors
  • 18.6 Physical Transducers
  • 18.6.1 Acoustic Wave Devices
  • 18.6.2 Microcantilevers
  • 18.7 Spectrometers
  • 18.7.1 Ion Mobility Spectrometry
  • 18.7.2 Quadrupole Mass Spectrometer
  • 18.8 Thermal Sensors
  • 18.8.1 Concept
  • 18.8.2 Pellister Catalytic Sensors
  • 18.9 Optical Transducers
  • 18.9.1 Infrared Detection
  • 18.9.2 Fiber-Optic Transducers
  • 18.9.3 Ratiometric Selectivity (Pulse Oximeter)
  • 18.9.4 Color Change Sensors
  • 18.10 Multi-sensor Arrays
  • 18.10.1 General Considerations
  • 18.10.2 Electronic Noses and Tongues
  • 18.11 Specific Difficulties
  • References
  • 19 Materials and Technologies
  • 19.1 Materials
  • 19.1.1 Silicon as Sensing Material
  • 19.1.2 Plastics
  • 19.1.3 Metals
  • 19.1.4 Ceramics
  • 19.1.5 Structural Glasses
  • 19.1.6 Optical Glasses
  • 19.2 Nano-materials
  • 19.3 Surface Processing
  • 19.3.1 Spin Casting
  • 19.3.2 Vacuum Deposition
  • 19.3.3 Sputtering
  • 19.3.4 Chemical Vapor Deposition (CVD)
  • 19.3.5 Electroplating
  • 19.4 MEMS Technologies
  • 19.4.1 Photolithography
  • 19.4.2 Silicon Micromachining
  • 19.4.3 Micromachining of Bridges and Cantilevers
  • 19.4.4 Lift-Off
  • 19.4.5 Wafer Bonding
  • 19.4.6 LIGA
  • References
  • Appendix