Design Principles of Ships and Marine Structures

Editor/Author Chandra Misra, Suresh
Publication Year: 2015
Publisher: CRC Press

Single-User Purchase Price: $149.95
Unlimited-User Purchase Price: Not Available
ISBN: 978-1-48-225446-4
Category: Technology & Engineering - Aeronautics & Watercraft
Image Count: 201
Book Status: Available
Table of Contents

Design Principles of Ships and Marine Structures details every facet of ship design and design integration, and highlights the design aspects that must be put together to create an integrated whole product. This book discusses naval architecture and marine engineering applications and principles relevant to the design of various systems, examines advanced numerical techniques that can be applied to maritime design procedure at the concept design stage, and offers a comprehensive approach to the subject of ship design.

Share this

Table of Contents

  • Preface
  • Acknowledgements
  • Author
  • Nomenclature
  • 1. Introduction
  • 1.1 Development of Marine Vehicles, Structures and Facilities
  • 1.2 Types of Marine Vehicles, Structures and Facilities
  • 1.2.1 Transportation
  • 1.2.2 Defence
  • 1.2.3 Resource Exploitation
  • 1.2.3.1 Living Resources
  • 1.2.3.2 Mineral Resources
  • 1.2.3.3 Renewable Energy
  • 1.2.3.4 Fossil Fuels
  • 1.2.4 Tourism, Recreation and Sports
  • 1.2.5 Land–Sea Interface
  • 1.2.6 Support Services
  • 1.3 Design Definition and Marine Environment
  • 2. Marine Environment
  • 2.1 Oceans
  • 2.1.1 Ocean Bottom
  • 2.1.2 World Water Resources
  • 2.1.3 Straits and Waterways
  • 2.1.4 Freshwater Resources
  • 2.2 Properties of Water
  • 2.2.1 Physical Properties
  • 2.2.2 Density
  • 2.2.3 Temperature Distribution in the Oceans
  • 2.2.4 Transmission of Electromagnetic Radiation in Water
  • 2.2.5 Salinity
  • 2.2.6 Sound Properties in Water
  • 2.3 Atmosphere
  • 2.3.1 Coriolis Effect
  • 2.3.2 Atmosphere Circulation
  • 2.4 Ocean Circulation
  • 2.4.1 Ekman Spiral
  • 2.4.2 Geostrophic Flow
  • 2.4.3 Gyres
  • 2.4.4 Thermohaline Circulation
  • 2.4.5 Circulation in Basins other than Deep Ocean
  • 2.4.6 Tides
  • 2.4.7 Ocean Currents
  • 2.5 Ocean Waves
  • 2.5.1 Potential Theory of Water Waves
  • 2.5.2 Regular Waves
  • 2.5.3 Irregular Waves
  • 2.5.4 Energy Spectrum
  • 2.5.5 Representation of an Irregular Seaway
  • 2.5.6 Shallow Water Waves
  • 2.5.7 Seiches
  • 2.5.8 Storm Surges
  • 2.5.9 Tsunamis
  • 2.5.10 Internal Waves
  • 3. Design Process
  • 3.1 Mission Requirement
  • 3.2 Market Study
  • 3.2.1 Identifying Customer Needs
  • 3.2.2 Product Design
  • 3.2.3 Relate Product to Enterprise
  • 3.2.4 Promotion
  • 3.3 System Design
  • 3.3.1 Features of a Marine Product
  • 3.3.2 Sustainability
  • 3.3.3 Subsystems and System Components
  • 3.3.4 System Integration
  • 3.4 Design Process
  • 3.4.1 Sequential Design Process
  • 3.4.2 Concurrent Engineering in Design
  • 3.4.3 Point-Based Design
  • 3.4.4 Set-Based Design
  • 3.5 Design Stages
  • 3.6 Information Generation and Management
  • 3.7 Communication
  • 3.8 Design Tools
  • 3.8.1 Data Collection and Statistical Analysis
  • 3.8.2 Scientific Knowledge Base and Computer Software
  • 4. Engineering Economics
  • 4.1 Interest Relationships
  • 4.2 Economic Criteria
  • 4.2.1 Net Present Value
  • 4.2.2 Required Income
  • 4.2.3 Internal Rate of Return or Yield
  • 4.2.4 Permissible Price
  • 4.2.5 Payback Period
  • 4.3 Economic Complexities
  • 4.3.1 Loan
  • 4.3.2 Stage Payment
  • 4.3.3 Subsidy
  • 4.3.4 Escalation
  • 4.3.5 Depreciation
  • 4.3.6 Taxes
  • 4.4 Cash Flow Calculation
  • 4.5 Building Cost Estimation
  • 4.5.1 Material Cost
  • 4.5.2 Labour Cost
  • 4.5.3 Direct Cost
  • 4.5.4 Indirect Expenses
  • 4.5.5 Production Quantum
  • 4.5.6 Production Rate
  • 4.5.7 Financial Complications
  • 4.5.8 Labour Rate
  • 4.5.9 Stages of Building Cost Estimation
  • 4.5.9.1 Pre-Contract Cost Estimation
  • 4.5.9.2 Pre-Contract Cost Estimation of Value-Added Structures and Vehicles
  • 4.5.9.3 Contractual Cost Estimation
  • 4.5.9.4 Actual Costing
  • 4.6 Determination of Price
  • 4.7 Design versus Tendering and Contract
  • 4.8 Engineering Economics Application to Ship Design
  • 4.8.1 Ship-Operating Economics
  • 4.8.2 Application to Ship Design
  • 4.8.3 Comparison of Alternative Designs
  • 4.8.4 Uncertainties in Ship Design
  • 4.8.5 The Optimal Ship
  • 5. Vehicle Parameter Estimation
  • 5.1 Ship Nomenclature
  • 5.2 Controlling Equations for Preliminary Estimation of Main Parameters
  • 5.3 Data Collection and Analysis for Parameter Estimation
  • 5.4 Approximate Semi-Empirical Relationships for Parameter Estimation
  • 5.4.1 Midship Area Coefficient
  • 5.4.2 Water Plane Area Coefficient
  • 5.5 Basic Ship Method of Parameter Estimation
  • 5.6 Preliminary Performance Estimate
  • 5.6.1 Vertical Centre of Buoyancy, KB
  • 5.6.2 Moment of Inertia of Water Plane
  • 6. Stability of Floating Bodies
  • 6.1 Bonjean Curves and Hydrostatics
  • 6.2 Stability at Small Angles
  • 6.3 Stability at Large Angles
  • 6.3.1 Righting Lever of Floating Bodies
  • 6.3.2 Righting Lever of Submerged Bodies
  • 6.3.3 Free-Surface Effect
  • 6.3.4 Grain Shifting Moment due to Carriage of Bulk Dry Cargo
  • 6.4 Intact Stability Requirements
  • 6.5 Effect of Parametric Changes on Stability
  • 6.5.1 Effect of Change of Breadth on Stability
  • 6.5.2 Effect of Change of Depth on Stability
  • 6.5.3 Effect of Change of Form
  • 6.6 Discussion on Stability
  • 6.7 Damaged Stability
  • 6.8 Safety and Subdivision
  • 7. Hydrodynamic Design
  • 7.1 Resistance
  • 7.1.1 Components of Total Resistance
  • 7.1.2 Shallow-Water Effects
  • 7.1.3 Methodical Series
  • 7.1.4 Resistance Estimation by Statistical Method
  • 7.1.5 Resistance Estimation of Submersibles
  • 7.1.6 Experimental Fluid Dynamics
  • 7.1.7 Computational Fluid Dynamics
  • 7.2 Propulsion
  • 7.2.1 Power Transmission
  • 7.2.2 Cavitation
  • 7.2.3 Selection of Screw Propeller Parameters
  • 7.2.4 Selection of Propeller Type
  • 7.3 Seakeeping
  • 7.3.1 Ocean Waves and Ship Motions
  • 7.3.2 Prediction of Seakeeping Behaviour
  • 7.3.2.1 Numerical Estimation
  • 7.3.2.2 Experimental Prediction
  • 7.3.2.3 Statistical Prediction
  • 7.3.3 Effect of Ship Parameters on Seakeeping
  • 7.3.4 Control of Ship Motion
  • 7.3.4.1 Bilge Keel
  • 7.3.4.2 Outriggers or Removable Stabilizers
  • 7.3.4.3 Antiroll Tanks
  • 7.3.4.4 Active Antiroll Tanks
  • 7.3.4.5 Stabilizer Fins
  • 7.3.4.6 Translating Solid Weight
  • 7.3.4.7 Gyroscopic Stabilizers
  • 7.3.4.8 Rudder Roll Stabilization
  • 7.3.4.9 Maglift Stabilizers
  • 7.4 Manoeuvrability
  • 7.4.1 Manoeuvring Trials
  • 7.4.1.1 Turning Circle Manoeuvre
  • 7.4.1.2 Zig-Zag Manoeuvre
  • 7.4.1.3 Manoeuvres to Determine Course Stability
  • 7.4.1.4 Stopping Manoeuvres
  • 7.4.1.5 Other Effects during Turn
  • 7.4.2 Manoeuvring Standards
  • 7.4.3 Estimation of Manoeuvring Characteristics
  • 7.4.3.1 Free Running Model Experiments
  • 7.4.3.2 Captive Model Experiments
  • 7.4.3.3 Numerical Simulation
  • 7.4.3.4 Statistical Analysis
  • 7.4.3.5 System Identification–Based Prediction
  • 7.4.3.6 Manoeuvring Devices
  • 7.4.4 Design Considerations for Controllability
  • 7.4.4.1 Environment
  • 7.4.4.2 Effect on Hull Parameters
  • 8. Hull Form Design
  • 8.1 Hull Form Characteristics
  • 8.1.1 River Vessels
  • 8.1.2 Yachts
  • 8.1.3 Semi-Planing and Planing Vessels
  • 8.1.4 Catamaran Vessels
  • 8.1.5 SWATH Vessels
  • 8.1.6 Seagoing Vessels
  • 8.1.6.1 Midship Section Design
  • 8.1.6.2 Bow Profile and Forward Section Shape
  • 8.1.6.3 Bulbous Bow
  • 8.1.6.4 Forward Section Flare above Water
  • 8.1.6.5 Inverted Bow or X-Bow
  • 8.1.6.6 Sectional Area Curve
  • 8.1.6.7 Load Water Line
  • 8.1.6.8 Stern Forms
  • 8.2 Geometrical Design
  • 8.2.1 Principal Parameters of the Hull Form
  • 8.2.2 Form Parameter Approach
  • 8.2.3 Lines Distortion Approach
  • 8.2.4 Standard Series Approach
  • 8.3 Computer-Aided Design of Hull Form
  • 9. Machinery System
  • 9.1 Main and Auxiliary Machinery and Equipment
  • 9.2 Energy Consumption Pattern
  • 10. Structural Design
  • 10.1 Marine Structural Material
  • 10.1.1 Structural Steel
  • 10.1.2 Aluminium
  • 10.1.3 Titanium
  • 10.1.4 Fibre-Reinforced Plastics
  • 10.2 Loads on Marine Structures and Vehicles
  • 10.2.1 Static Loading and Vertical Bending Moment
  • 10.2.2 Wave Bending Moment
  • 10.2.3 Horizontal Bending Moment
  • 10.2.4 Torsional Moment
  • 10.2.5 Static External Hydrostatic Load
  • 10.2.6 Static Internal Load
  • 10.2.7 Dynamic External Load due to Waves
  • 10.2.8 Dynamic Loading
  • 10.2.9 Miscellaneous Loading
  • 10.2.10 Operational Loads
  • 10.2.11 Loads due to Ship Handling
  • 10.3 Structural Layout
  • 10.3.1 Bending Stress on Hull Girder
  • 10.3.2 Shear Stress
  • 10.3.3 Buckling Stress
  • 10.3.4 Stiffened and Unstiffened Plate Panels
  • 10.3.5 Continuity and Structural Alignment
  • 10.3.6 Stress Concentration
  • 10.4 Structural Design
  • 10.4.1 Rule-Based Design
  • 10.4.2 Direct Calculation-Based Design
  • 10.4.3 Reliability-Based Design
  • 10.4.4 Corrosion Allowance
  • 10.4.5 Fatigue in Marine Structure
  • 11. Layout Design
  • 11.1 Cargo Spaces
  • 11.1.1 General Cargo
  • 11.1.2 Solid Bulk Cargo
  • 11.1.3 Liquid Bulk Cargo
  • 11.1.3.1 Crude and Product Oil
  • 11.1.3.2 Chemical Cargo
  • 11.1.3.3 Liquefied Gas
  • 11.1.4 Unitised Cargo
  • 11.1.4.1 Containers
  • 11.1.4.2 Roll-On/Roll-Off Cargo
  • 11.2 Liquid Non-Cargo Spaces
  • 11.3 Working Spaces
  • 11.3.1 Machinery Spaces
  • 11.3.2 Working Spaces on the Open Deck
  • 11.3.3 Navigation and Control Spaces
  • 11.3.4 Space for Stores and Spares
  • 11.4 Accommodation Spaces
  • 11.5 Ergonomics in Layout Design
  • 11.5.1 Lighting and Visual Comfort
  • 11.5.2 Interior Environment
  • 11.5.3 Vibration
  • 11.5.4 Noise
  • 11.5.5 Access and Egress
  • 12. Design for Safety
  • 12.1 Safety at Sea and Design Application
  • 12.1.1 Personal Safety on Board
  • 12.1.2 Stability and Safety
  • 12.1.3 Motions and Safety
  • 12.1.4 Controllability and Safety
  • 12.1.5 Fire
  • 12.1.6 Hazardous Cargo: Liquefied Gas and Chemical Tankers
  • 12.1.6.1 Gas Carriers
  • 12.1.6.2 Chemical Tankers
  • 12.1.7 Life-Saving Appliances
  • 12.1.8 Machinery Failure
  • 12.2 Design for Maintenance
  • 12.3 Rule-Based Design
  • 12.4 Risk-Based Design
  • 12.4.1 Step 1: Hazard Identification
  • 12.4.2 Step 2: Risk Analysis
  • 12.4.3 Human Reliability Analysis
  • 12.4.4 Step 3: Risk Control Options
  • 12.4.5 Step 4: Cost-Benefit Analysis
  • 12.4.6 Step 5: Decision-Making
  • 12.4.7 Overall Design Application
  • 13. Design for Sustainability
  • 13.1 Air Pollution
  • 13.1.1 Air Pollution from Diesel Oil Burning Engines
  • 13.1.2 Energy Efficiency Design Index
  • 13.1.3 Natural Gas as Marine Transportation Fuel
  • 13.1.3.1 Physical Properties of Natural Gas
  • 13.1.3.2 Storage of Natural Gas
  • 13.1.3.3 Emissions from Natural Gas
  • 13.1.3.4 NG Engines: Design Implications
  • 13.1.4 Alternative Energy Sources for Ship Operation
  • 13.1.4.1 Biofuel
  • 13.1.4.2 Nuclear Power
  • 13.1.4.3 Batteries
  • 13.1.4.4 Fuel Cell
  • 13.1.4.5 Wind Energy
  • 13.1.4.6 Solar Energy
  • 13.1.4.7 Other Devices
  • 13.1.5 Emission Reduction by Increasing Energy Efficiency
  • 13.2 Ocean Pollution
  • 13.2.1 Pollution due to Oil
  • 13.2.2 Pollution due to Garbage
  • 13.2.3 Pollution due to Sewage
  • 13.3 Dispersal of Aquatic Species due to Shipping
  • 13.3.1 Ballast Water
  • 13.3.2 Paints
  • 13.4 Underwater Noise
  • 13.5 Ship Recycling
  • 14. Design for Production
  • 14.1 Manufacturing Design
  • 14.2 Design for Production
  • 14.2.1 Features of Marine Construction Process
  • 14.2.2 Producibility
  • 14.2.2.1 Producibility Concepts
  • 14.2.2.2 Evaluation of Producibility Concepts on Cost
  • 14.2.2.3 Integration of Producibility Concepts into Design
  • 14.2.2.4 Feedback for Improvement
  • 14.3 Modularisation
  • 14.3.1 Hull Form Modularisation
  • 14.3.1.1 An Example
  • 15. Decision-Making Process
  • 15.1 Modelling the Optimisation Problem
  • 15.1.1 Problem Formulation
  • 15.1.2 Problem Characteristics
  • 15.1.3 Solution Methods
  • 15.2 Optimisation Techniques
  • 15.2.1 Unconstrained Optimisation
  • 15.2.1.1 Unconstrained One-Dimensional Search
  • 15.2.1.2 Unconstrained N-Dimensional Search
  • 15.2.2 Constrained Optimisation
  • 15.2.2.1 Linear Programming
  • 15.2.2.2 Integer Programming
  • 15.2.2.3 Constrained Non-Linear Optimisation
  • 15.2.3 Dynamic Programming
  • 15.3 Heuristic Methods for Decision Support Systems
  • 15.3.1 Simulated Annealing
  • 15.3.2 Genetic Algorithm
  • 15.4 Multiple Criteria Decision-Making
  • 15.4.1 Multi-Attribute and Multi-Objective Decision-Making
  • 15.5 Decision Support Applications in Ship Design
  • 16. Design Management
  • 16.1 Creativity and Innovation
  • 16.2 Design Integration
  • 16.3 Design Management
  • References