The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook

Editor/Author Eren, Halit and Webster, John G.
Publication Year: 2015
Publisher: CRC Press

Single-User Purchase Price: $279.95
Unlimited-User Purchase Price: Not Available
ISBN: 978-1-48-223655-2
Category: Health & Medicine - Health
Image Count: 503
Book Status: Available
Table of Contents

The E-Medicine, E-Health, M-Health, Telemedicine, and Telehealth Handbook provides extensive coverage of modern telecommunication in the medical industry, from sensors on and within the body to electronic medical records and beyond. This two-volume set describes how information and communication technologies, the internet, wireless networks, databases, and telemetry permit the transmission and control of information within and between medical centers.

Share this

Table of Contents

  • Preface
  • Acknowledgments
  • Editors
  • Contributors
  • VOLUME I
  • Section I Integration of eMedicine, Telemedicine, eHealth, and mHealth
  • 1. Integrating Telemedicine and Telehealth—Advancing Health at a Distance - Habib F. Rashvand and Kuei-Fang Hsiao
  • 1.1 Introduction
  • 1.1.1 Telemedicine versus Telehealth
  • 1.1.1.1 Definitions
  • 1.1.2 Technologies versus Services
  • 1.2 Technology-Enabled Distant Health
  • 1.2.1 Telemedicine Technological Requirements
  • 1.2.2 Telehealth Technological Requirements
  • 1.3 Typical Distant-Health Examples
  • 1.3.1 Smart Medical Shirts
  • 1.3.2 Haptic Platform
  • 1.3.3 Overgrown Cities
  • 1.3.4 Rural Health
  • 1.3.5 Satellite Telehealth
  • 1.4 Integrated Service Management
  • 1.4.1 Telemedicine Critical Technologies
  • 1.4.2 MOT: Marketing
  • 1.4.2.1 Marketing Orientation
  • 1.4.2.2 Holistic Marketing
  • 1.4.3 MOT: Innovative Deployment
  • 1.4.3.1 Integrated TLM-TLH Service Paradigm
  • 1.4.3.2 Holistic Approach
  • 1.4.3.3 Building Trust
  • 1.5 Conclusions
  • Acknowledgments
  • Abbreviations and Nomenclature
  • References
  • 2. Readying Medical Applications for Telehealth - I-Hen Tsai
  • 2.1 Introduction
  • 2.2 History and Recent Developments in Telehealth and mHealth
  • 2.2.1 History of Telehealth and mHealth
  • 2.2.2 Recent Developments
  • 2.3 Present Challenges and Benefits
  • 2.3.1 Deployment Problems
  • 2.3.2 Technical Challenges
  • 2.3.3 Handling Data and Privacy
  • 2.4 Groundwork for a Good Telehealth Application
  • 2.4.1 Communicating and Understanding Needs
  • 2.4.2 Build on Familiar User Experiences
  • 2.5 Enabling Telehealth for Your Existing Medical Application
  • 2.6 Case Study—Panic Disorder Self-Therapy System
  • 2.7 Case Study—Diabetes Telehealth Framework
  • 2.8 Case Study—Telehealth Support for Unit Care
  • 2.9 Conclusions
  • Acknowledgments
  • References
  • 3. Virtual Hospitals: Integration of Telemedicine, Healthcare Services, and Cloud Computing - Shaftab Ahmed and M. Yasin Akhtar Raja
  • 3.1 Introduction
  • 3.2 Related Work
  • 3.3 Service Integration in Virtual Hospitals
  • 3.3.1 Social Networking
  • 3.3.2 Data Accessibility in the Cloud
  • 3.3.2.1 Telemedicine for Ubiquitous Healthcare
  • 3.3.3 Data Acquisition, Transmission, and Archiving
  • 3.3.4 Work-Flow and Decision-Support Systems in Cloud Architecture
  • 3.3.5 Agent-Based Proactive Study and Knowledge-Based Management Systems (KBMSs)
  • 3.3.5.1 Agent-Based Proactive Study
  • 3.3.5.2 Knowledge-Based Management Systems
  • 3.3.6 Disaster Management and Emergency Response Services
  • 3.3.7 Recovery Rehabilitation and Medical Tourism
  • 3.4 Medical Data Storage and Presentation Standards
  • 3.5 Nursing Stations for Remote Patient Monitoring
  • 3.6 Cybersecurity Issues
  • 3.6.1 Hierarchical Security Management
  • 3.6.2 Root-Level Security for Physical Identity-Based Accessibility
  • 3.6.3 Proposed Trusted Computing Protocol
  • 3.6.4 Executing Client Application in Secure Environment
  • 3.7 Conclusion and Discussion
  • List of Acronyms and Abbreviations
  • References
  • 4. Intelligent Electronic Health Systems - David A. Clifton, Marco A. F. Pimentel, Katherine E. Niehaus, Lei Clifton, Timothy E. A. Peto, Derrick W. Crook, and Peter J. Watkinson
  • 4.1 Introduction
  • 4.1.1 Objectives
  • 4.1.2 Themes Considered in This Chapter
  • 4.2 Theme I: Using the Broad Range of Data Sets within the EHR
  • 4.2.1 Case Study: Prediction of Bacterial Drug Susceptibility
  • 4.2.2 Features
  • 4.2.3 Supervised Learning Algorithms for the EHR
  • 4.2.4 Feature Selection
  • 4.2.5 Generalization
  • 4.2.6 Summary of Theme I
  • 4.3 Theme II: Augmenting the EHR with Sensor Data
  • 4.3.1 Case Study: Early-Warning Systems
  • 4.3.2 Estimating Vital Signs with Probabilistic Models
  • 4.3.3 Learning Data Trajectories
  • 4.3.4 Similarity between Vital-Signs Trajectories
  • 4.3.5 Summary of Theme II
  • 4.4 Theme III: EHRs in the Developing World
  • 4.4.1 Fusing Data from Noisy Time Series
  • 4.5 Conclusions and Future Directions
  • Acknowledgments
  • References
  • 5. Wearable Biomedical Systems and mHealth - Sungmee Park and Sundaresan Jayaraman
  • 5.1 Introduction
  • 5.1.1 The Healthcare Reality
  • 5.1.2 Technology, Innovation, and the Emergence of the “Patient-Consumer”
  • 5.1.3 The Healthcare Bill of Rights
  • 5.1.4 mHealth: Key to Enhancing Quality of Life
  • 5.1.4.1 The Desired State
  • 5.1.4.2 Organization of the Chapter
  • 5.2 The Healthcare Delivery Model and Its Transformation
  • 5.2.1 The Enablers in the Healthcare Continuum
  • 5.2.2 Transformation of Healthcare
  • 5.2.3 The Attributes of Patient-Centric Value-Based Care
  • 5.2.4 Data-Value Transformation and mHealth
  • 5.3 Big Data, mHealth, and Emerging Trends in Healthcare
  • 5.3.1 mHealth and the Patient Protection and Affordable Care Act
  • 5.3.1.1 Accountable Care Organization
  • 5.3.1.2 Bundled Payments for Care Improvement Initiative
  • 5.3.1.3 Evidence-Based Medicine
  • 5.3.2 Occupational Health and mHealth
  • 5.3.2.1 Role of mHealth
  • 5.3.3 The Value of mHealth
  • 5.3.4 The Grand Challenge: Harnessing Big Data for mHealth
  • 5.4 The WOW
  • 5.4.1 The Value Proposition for Wearables for mHealth
  • 5.4.2 The Metawearable Paradigm for mHealth
  • 5.4.3 Textiles as a Metawearable
  • 5.5 The Wearable Motherboard or Smart Shirt
  • 5.5.1 The Wearable Motherboard Architecture
  • 5.5.2 Testing of the Smart Shirt
  • 5.5.3 Realizing mHealth through the Wearable Motherboard
  • 5.5.3.1 Another Example
  • 5.6 Looking Ahead: WOW and the Future of mHealth
  • 5.6.1 The Chain Reaction
  • 5.7 Conclusions
  • Acknowledgments
  • References
  • 6. Wireless Instrumentation and Biomedical Applications - João Paulo Carmo and José Higino Correia
  • 6.1 Introduction
  • 6.2 Measurement Systems
  • 6.2.1 Multiplexing Structures
  • 6.2.2 Wireless Instruments Seen from the Communication Protocol Point of View
  • 6.3 Technology for Wireless Systems
  • 6.3.1 Operational Issues
  • 6.3.2 RF Interfaces
  • 6.4 Networks of Wireless Instruments
  • 6.5 Examples of Wireless Instruments in Biomedical Applications
  • 6.5.1 Commercial Off-the-Shelf (COTS) and Customized Applications
  • 6.5.2 Active Concepts for Biomedical Wireless Instruments
  • References
  • 7. Context-Aware Biomedical Smart Systems - François Philipp and Manfred Glesner
  • 7.1 Introduction
  • 7.2 Biomedical Smart Systems
  • 7.2.1 Architecture
  • 7.2.2 Applications of Smart Systems in Healthcare
  • 7.2.3 Microelectronic Technologies Enabling Smart Systems
  • 7.2.4 Considerations on Hardware-Software Codesign
  • 7.3 Building a Smart System for Activity Tracking
  • 7.3.1 Context Sensing
  • 7.3.2 Implementation
  • 7.4 Development Tools for Smart Systems
  • 7.5 Conclusion
  • References
  • Further Reading
  • Section II Wireless Technologies and Networks
  • 8. Technologies for mHealth - Jinman Kim, Christopher Lemon, Tanya Baldacchino, Mohamed Khadra, and Dagan (David) Feng
  • 8.1 Introduction to mHealth
  • 8.2 mHealth Technologies
  • 8.2.1 Mobile Devices
  • 8.2.2 Networks
  • 8.2.3 Health Information (Data) Exchange
  • 8.3 User Perspective and Usability
  • 8.3.1 User Perspective of mHealth
  • 8.3.2 mHealth Usability
  • 8.4 mHealth Implementation
  • 8.5 mHealth Case Studies
  • 8.5.1 Outreach Mobile Nursing
  • 8.5.2 mHealth Imaging
  • 8.5.3 mHealth Applications
  • Acknowledgments
  • References
  • 9. Wireless Body Area Network Protocols - Majid Nabi, Twan Basten, and Marc Geilen
  • 9.1 Introduction
  • 9.2 WBAN Characteristics
  • 9.2.1 Body Sensor Devices
  • 9.2.2 Energy Consumption Constraints
  • 9.2.3 Quality of Wireless Links
  • 9.2.4 Mobility
  • 9.2.5 Heterogeneity
  • 9.2.6 Network Scale
  • 9.3 WBAN Architectures
  • 9.3.1 Preliminaries
  • 9.3.2 Star Architecture
  • 9.3.3 Multihop Communication
  • 9.3.4 Protocol Stacks for WBANs
  • 9.4 MAC Mechanisms
  • 9.4.1 MAC Paradigms
  • 9.4.2 Low-Duty-Cycle TDMA-Based MAC
  • 9.4.3 Gossiping TDMA-Based MAC
  • 9.4.4 Battery-Aware MAC
  • 9.4.5 H-MAC: Heartbeat-Driven Medium Access Control
  • 9.4.6 BANMAC: Body Area Network Medium Access Control
  • 9.5 Communication Standards
  • 9.5.1 IEEE 802.15.4 LR-WPAN Standard
  • 9.5.2 IEEE 802.15.6 WBAN Standard
  • 9.6 Conclusions
  • References
  • 10. Wireless Body Area Network Data Delivery - Majid Nabi, Marc Geilen, and Twan Basten
  • 10.1 Introduction
  • 10.2 Data Delivery Requirements in WBANs
  • 10.2.1 Network Organization for Data Delivery
  • 10.2.2 Data Generation and Transmission
  • 10.2.3 Data Delivery Requirements
  • 10.3 WBAN Adaptation for Efficient Data Delivery
  • 10.3.1 WBAN Adaptation
  • 10.3.2 Link Quality Estimation for WBANs
  • 10.4 Mechanisms for Intra-WBAN Data Delivery
  • 10.4.1 Location-Based Data Forwarding
  • 10.4.2 Tree-Based Routing
  • 10.4.3 Probabilistic Routing
  • 10.4.4 Gossip-Based Data Forwarding
  • 10.4.5 On-Demand Data Forwarding
  • 10.5 Prioritized WBAN Data Delivery
  • 10.6 Conclusions
  • References
  • 11. Use of Small-Cell Technologies for Telemedicine - Edward Mutafungwa and Jyri Hämäläinen
  • 11.1 Introduction
  • 11.1.1 Background and Motivation
  • 11.1.2 Toward Connected Personal Health Systems
  • 11.1.3 Mobile Technologies for Personal Health Systems
  • 11.1.4 Scope and Organization of the Chapter
  • 11.2 Background on Personal Health Systems
  • 11.2.1 Revisiting Connectivity Needs for Personal Health Systems
  • 11.2.2 General System Requirements for Connectivity Providers
  • 11.2.3 Achieving Interoperability for Personal Health Systems
  • 11.2.3.1 Continua Reference Architecture
  • 11.2.3.2 IEEE 11073 Device Specializations
  • 11.2.4 mHealth Developments within Mobile Technology Standardization
  • 11.3 Overview of Small-Cell Technologies
  • 11.3.1 Drivers for Small-Cell Deployment
  • 11.3.2 Small-Cell Architectures
  • 11.3.2.1 Universal Terrestrial Radio Access Network (UTRAN) Architecture
  • 11.3.2.2 Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Architecture
  • 11.3.3 Access Control Mechanisms
  • 11.4 Small Cells for Personal Health Systems
  • 11.4.1 Brief Review of Existing Personal Health Gateway Approaches
  • 11.4.2 General End-to-End Implementation
  • 11.4.3 Benefits of Small Cells for Personal Health Systems
  • 11.4.3.1 QoS, Charging, and Policy Control
  • 11.4.3.2 Carrier-Grade Security
  • 11.4.3.3 Indoor Coverage and Capacity Enhancements
  • 11.4.3.4 Improved Device Energy Efficiency
  • 11.4.3.5 Small-Cell Services Development
  • 11.4.3.6 Mobile Traffic Offloading
  • 11.5 Simulation Case Study
  • 11.5.1 System Model
  • 11.5.2 System Simulation Assumptions
  • 11.5.3 Results and Discussions
  • 11.6 Conclusions
  • Abbreviations
  • Acknowledgments
  • References
  • 12. Dynamic Coexistence of Wireless Body Area Networks - Mohammad N. Deylami and Emil Jovanov
  • 12.1 Introduction
  • 12.2 WBAN Architecture
  • 12.2.1 Coexistence of WBANs
  • 12.3 Wireless Transmissions and Interference
  • 12.4 Methods for Coexistence Management
  • 12.5 Support for Coexistence in Different Wireless Standards
  • 12.5.1 The IEEE 802.11 (Wi-Fi)
  • 12.5.2 The IEEE 802.15.1 (Bluetooth)
  • 12.5.3 The IEEE 802.15.3 (Ultrawideband or UWB)
  • 12.5.4 The IEEE 802.15.4 (ZigBee)
  • 12.5.5 The IEEE 802.15.6
  • 12.5.6 Proprietary Wireless Technologies
  • 12.6 Conclusion
  • References
  • 13. Mobile Health and Smartphone Platforms: A Case Study - M. B. Srinivas
  • 13.1 Introduction
  • 13.2 Mobile Health
  • 13.2.1 Smartphone Platforms
  • 13.3 Mobile Operating Systems and Application Development
  • 13.3.1 Development of a Prototype Mobile Health Application
  • 13.3.1.1 The Hardware
  • 13.3.1.2 The Software
  • 13.4 Results and Implementation
  • 13.5 Conclusions
  • Acknowledgment
  • References
  • Section III Sensors, Devices, Implantables, and Signal Processing
  • 14. Medical Sensors for Mobile Communication Devices - Jacob Fraden
  • 14.1 Introduction
  • 14.2 Requirements for MCD Sensors
  • 14.3 Integration of Sensors
  • 14.4 Chemical and Bacteriological Sensing
  • 14.5 Blood Pressure Monitoring
  • 14.6 Energy Harvesting
  • References
  • 15. Development of Disposable Adhesive Wearable Human-Monitoring System - Alex Chun Kit Chan, Kohei Higuchi, and Kazusuke Maenaka
  • 15.1 Introduction
  • 15.2 Human Activity-Monitoring System
  • 15.3 System Concept
  • 15.4 Concept of Adhesive-Type Wearable Sensing Device
  • 15.4.1 Hybrid Implementation Model
  • 15.4.2 CMOS System-on-Chip
  • 15.4.2.1 Sensor Interface and ADC
  • 15.4.2.2 Digital Core and MCU
  • 15.4.2.3 Wishbone
  • 15.4.2.4 RF Interface (400 MHz/1.2 GHz)
  • 15.4.3 Energy Harvesting
  • 15.4.3.1 Solar Energy
  • 15.4.3.2 Electret-Based Energy Harvesting
  • 15.4.3.3 Electromagnetic Energy Harvesting
  • 15.4.3.4 Thermal Energy Harvesting
  • 15.4.4 MEMS Technology and Single-Chip Multisensor Integration
  • 15.4.4.1 Sensor Integration
  • 15.4.4.2 Starting Wafer: Silicon-on-Honeycomb Insulator Wafer with Silicon-on-Nothing Machining for Pressure Sensor
  • 15.4.4.3 Dynamic Acceleration Sensor: Lead Zirconate Titanate as Detection Mechanism
  • 15.4.4.4 Static Acceleration Sensor: Capacitive-Type 3D Acceleration Sensor
  • 15.4.4.5 Blood Pulse/SpO2 Sensor 324
  • 15.4.4.6 Other Sensors and Technologies
  • 15.4.5 Wireless—A 315 MHz RF Transceiver Module
  • 15.4.6 The Software
  • 15.5 Large Module Adhesive-Type Wearable Sensing Device
  • 15.6 Conclusion
  • Acknowledgments
  • References
  • 16. Drug-Delivery Systems in eMedicine and mHealth - Arni Ariani, Soegijardjo Soegijoko, and Hermawan Nagar Rasyid
  • 16.1 Introduction
  • 16.2 Implantable Drug-Delivery Systems (IDDSs)
  • 16.2.1 Implantable Pump Systems
  • 16.2.1.1 Osmotic Pumps
  • 16.2.1.2 Infusion Pumps
  • 16.2.2 Micro-/Nanofabricated IDDSs
  • 16.2.3 Implantable Microfluidic Devices
  • 16.2.4 Ceramic Drug-Delivery Systems (CDDSs)
  • 16.2.5 PMMA Beads
  • 16.2.6 Discussion
  • 16.3 Dermal Drug-Delivery Systems
  • 16.3.1 Microneedle Syringes
  • 16.3.2 Microneedle Patches
  • 16.3.3 Discussion
  • 16.3.3.1 Pain
  • 16.3.3.2 The Irritation of the Skin
  • 16.3.3.3 The Infection of the Skin
  • 16.4 Human Body Modeling for Study of EMF Interaction
  • 16.5 Power
  • 16.6 Data Telemetry
  • 16.6.1 Near-Field Resonant Inductive Coupling
  • 16.6.2 Wireless Communication
  • 16.7 mHealth Solutions for Drug-Delivery System
  • 16.7.1 Automatic Drug-Delivery System
  • 16.7.2 Disposable Patch Pump
  • 16.7.3 Wireless Drug Dosage Monitoring
  • 16.8 Conclusion
  • References
  • 17. Implantable Systems - Vincenzo Luciano, Emilio Sardini, Alessandro Dionisi, Mauro Serpelloni, and Andrea Cadei
  • 17.1 Introduction
  • 17.2 Implantable System Architecture
  • 17.2.1 Telemetric Systems
  • 17.2.2 Power-Harvesting Systems
  • 17.3 Force Measurement inside Knee Prosthesis
  • 17.3.1 Experimental Results
  • 17.4 Power Harvesting in Implantable Human Total Knee Prosthesis
  • 17.5 Conclusions
  • References
  • 18. Signal Processing in Implantable Neural Recording Microsystems - Sedigheh Razmpour, Mohammad Ali Shaeri, Hossein Hosseini-Nejad, and Amir M. Sodagar
  • 18.1 Neurophysiological Background
  • 18.1.1 Introduction
  • 18.1.2 The Intracellular Neural Signal
  • 18.1.2.1 Resting Potential
  • 18.1.2.2 Action Potential
  • 18.1.3 The Extracellular Neural Signal
  • 18.2 Neural Recording Microsystems
  • 18.2.1 Neural Recording Approaches
  • 18.2.2 Neural Recording Microsystems
  • 18.2.2.1 Recording Front-End
  • 18.2.2.2 Wireless Interfacing Module
  • 18.2.2.3 Neural Processing Module
  • 18.3 High-Density Neural Recording
  • 18.3.1 System-Level Approaches
  • 18.3.2 Signal-Level Approaches
  • 18.4 Neural Signal Processing in the Time Domain
  • 18.4.1 Spike Detection
  • 18.4.2 Spike Extraction
  • 18.4.3 Feature Extraction and Spike Sorting
  • 18.4.4 Delta Compression
  • 18.4.5 Nonlinear Quantization
  • 18.5 Transform-Based Neural Signal Compression
  • 18.5.1 Performance Measures
  • 18.5.2 The Discrete Wavelet Transform
  • 18.5.3 The Walsh-Hadamard Transform
  • 18.5.4 The Discrete Cosine Transform
  • 18.6 Data Framing
  • 18.7 Concluding Remarks
  • Acknowledgments
  • References
  • 19. Electronic Health Signal Processing - Mohit Kumar, Norbert Stoll, Kerstin Thurow, and Regina Stoll
  • 19.1 Introduction
  • 19.2 Background
  • 19.2.1 A Takagi-Sugeno Fuzzy Filter
  • 19.2.1.1 Triangular Membership Functions
  • 19.2.2 Stochastic Fuzzy Modeling of Biomedical Signals
  • 19.2.3 A Stochastic Mixture of Signal Data Fuzzy Models
  • 19.3 Variational Bayesian Inference of Stochastic Mixture of Signal Data Models
  • 19.3.1 Optimization with respect to q(π)
  • 19.3.2 Optimization with respect to q(αi)
  • 19.3.3 Optimization with respect to q(φi)
  • 19.3.4 Optimization with respect to q(s)
  • 19.3.5 Summary
  • 19.4 A Case Study
  • 19.5 Concluding Remarks
  • References
  • Section IV Implementation of eMedicine and Telemedicine
  • 20. Telecardiology - Rajarshi Gupta
  • 20.1 Introduction
  • 20.2 Components of a Telecardiology System and Functioning
  • 20.3 Cardiovascular Signal Acquisition
  • 20.4 Signal Compression in Telecardiology
  • 20.5 Role of Information and Communication Technology in Telecardiology
  • 20.6 Electronic Health Records, Medical Information System, and Interface with Medical Professionals
  • 20.7 Data Security and Privacy Issues in Telecardiology
  • 20.8 Medical Signal Analysis in Telecardiology Systems
  • 20.9 Trends in Telecardiology Systems
  • Acknowledgments
  • References
  • Further Reading
  • 21. Telecardiology Tools and Devices - Axel Müller, Jörg Otto Schwab, Christian Zugck, Johannes Schweizer, and Thomas M. Helms
  • 21.1 Introduction
  • 21.2 Telemedical ECG Monitoring
  • 21.3 Telemonitoring in Patients with CIEDs
  • 21.3.1 Introduction
  • 21.3.2 Telemonitoring Methods in Patients with CIEDs
  • 21.3.3 Clinical Data for Telemedical Monitoring of Patients with CIEDs
  • 21.4 Telemonitoring in Patients with Chronic Heart Failure
  • 21.4.1 Goals of Telemonitoring in Patients with Chronic Heart Failure
  • 21.4.2 Telemonitoring Method in Patients with Chronic Heart Failure
  • 21.4.2.1 Support Concept with Heart Failure Nurses
  • 21.4.2.2 Care Concepts with Telemonitoring
  • 21.4.3 Current Study Status
  • 21.5 Telemonitoring in Patients with Arterial Hypertension
  • 21.6 Conclusions
  • References
  • 22. Teleradiology - Liam Caffery
  • 22.1 Introduction
  • 22.2 Background
  • 22.2.1 Definitions
  • 22.2.2 Clinical Teleradiology
  • 22.2.3 Technology Considerations
  • 22.2.3.1 DICOM
  • 22.3 The Commoditization War
  • 22.4 Mobile Teleradiology
  • 22.4.1 Digital Image Fundamentals
  • 22.4.2 Monitor Characteristics
  • 22.4.3 Workstation Characteristics
  • 22.5 Teleradiology on Handheld Devices
  • 22.5.1 Handheld Device Characteristics
  • 22.5.1.1 Hardware
  • 22.5.2 Clinical Efficacy
  • 22.6 Conclusions
  • Abbreviations and Glossary
  • References
  • Further Reading
  • Technical Guidelines
  • 23. Teledermatology - Soegijardjo Soegijoko, Arni Ariani, and Sugiyantini
  • 23.1 Introduction
  • 23.2 Structure of the Skin
  • 23.3 Common Skin Diseases
  • 23.3.1 Eczema
  • 23.3.2 Fungal/Yeast Infections
  • 23.3.3 Bacterial Infections
  • 23.3.4 Viral Infections
  • 23.3.5 Parasitic Infections
  • 23.3.6 Autoimmune Disease
  • 23.3.7 Miscellaneous Skin Diseases
  • 23.4 Teledermatology Models
  • 23.4.1 Store-and-Forward Teledermatology
  • 23.4.2 Live-Interactive Teledermatology
  • 23.4.3 Hybrid Teledermatology
  • 23.5 The Implementation of Teledermatology Models (Existing Applications)
  • 23.6 Technical Aspects
  • 23.6.1 Acquisition of Images
  • 23.6.1.1 Digital Camera
  • 23.6.1.2 Digital Video Camera
  • 23.6.2 Data Display
  • 23.6.3 Data Storage, Retrieval, and Transmission
  • 23.7 Teledermatology Evaluation
  • 23.7.1 Diagnostic Reliability
  • 23.7.2 Diagnostic Accuracy
  • 23.7.3 Outcomes
  • 23.7.4 Cost Effectiveness
  • 23.7.5 End Users'Satisfaction
  • 23.7.5.1 Patients'Satisfaction
  • 23.7.5.2 Referring Clinicians’ Satisfaction
  • 23.7.5.3 Consultants’ Satisfaction
  • 23.8 Future Developments
  • References
  • 24. Teleaudiology - Robert H. Eikelboom and De Wet Swanepoel
  • 24.1 Introduction
  • 24.1.1 The Demand for Hearing Health Services
  • 24.1.2 Prevalence of Hearing Loss and Incidence of Ear Disease
  • 24.1.3 Number and Distribution of Ear and Hearing Health Professionals
  • 24.1.4 The Role of Telehealth in Audiology
  • 24.2 Synchronous and Asynchronous Teleaudiology
  • 24.3 Requirements for Providing Primary through Tertiary Ear and Hearing Health Services
  • 24.3.1 Barriers to Success and Planning for Success
  • 24.3.2 Local Personnel
  • 24.3.3 Training and Support
  • 24.3.4 Equipment
  • 24.3.5 Protocols and Referral Pathway
  • 24.4 Teleaudiology Functions
  • 24.4.1 Screening
  • 24.4.2 Diagnosis
  • 24.4.3 Case History
  • 24.4.4 Otoscopy and Video Otoscopy
  • 24.4.4.1 Video Otoscope Selection
  • 24.4.5 Tympanometry
  • 24.4.5.1 Tympanometer Selection
  • 24.4.6 Audiometry
  • 24.4.6.1 Audiometer Selection
  • 24.4.7 Speech Audiometry
  • 24.4.8 Auditory Evoked Responses
  • 24.4.9 Intraoperative Monitoring
  • 24.4.10 Balance Assessment
  • 24.4.11 Intervention
  • 24.4.11.1 Counseling
  • 24.4.11.2 Hearing Aids and Assistive Devices
  • 24.4.11.3 Hearing Implants
  • 24.4.12 Continued Professional Education
  • 24.5 Case Studies of Teleaudiology
  • 24.5.1 Teleaudiology in Witkoppen, South Africa
  • 24.5.2 Teleotology in Alaska
  • 24.5.3 Telepractice between Sydney and Western Samoa
  • 24.6 Conclusions
  • Acknowledgment
  • Partial List of Manufacturers and Suppliers
  • References
  • 25. Teleoncology - Natalie K. Bradford and Helen Irving
  • 25.1 Introduction
  • 25.2 Oncology Overview
  • 25.3 Teleoncology
  • 25.3.1 Rationale for Teleoncology
  • 25.4 Telecommunications and Models of Cancer Care
  • 25.5 Traditional Models of Cancer Care for Regional or Remote Locations
  • 25.6 Potential Benefits and Disadvantages of Teleoncology
  • 25.7 Teleoncology and Cancer Prevention
  • 25.8 Teleoncology and Cancer Diagnosis
  • 25.9 Teleoncology and Cancer Treatment
  • 25.9.1 Teleconsultation
  • 25.9.2 Virtual Multidisciplinary Team Meetings
  • 25.9.3 Clinical Trials
  • 25.9.4 Integrated Decision-Support Systems
  • 25.9.5 Telesurgery
  • 25.9.6 Teleradiotherapy
  • 25.10 Supportive Care
  • 25.10.1 Discharge Planning
  • 25.10.2 Access to Allied Health
  • 25.10.3 Palliative Care
  • 25.11 Enhancing Cancer Care in Low- and Middle-Income Nations
  • 25.12 Economics
  • 25.13 Medicolegal Recommendations
  • 25.14 Training and Education
  • 25.15 Barriers to Progress
  • 25.15.1 Human Factors
  • 25.15.2 Education and Support
  • 25.15.3 Costs
  • 25.16 Conclusions
  • Acknowledgment
  • References
  • 26. Telepathology System Development and Implementation - Ronald S. Weinstein
  • 26.1 Introduction
  • 26.1.1 Telepathology Systems
  • 26.1.2 Telepathology System Development
  • 26.2 Telepathology System Classifications
  • 26.2.1 Human Pathology Telepathology System Classification (2001)
  • 26.2.2 APMIS Telepathology System Classification (2012)
  • 26.2.3 American Telemedicine Association Clinical Guidelines (2014)
  • 26.3 Telepathology System Classification: 2014 Practitioners
  • 26.4 Conclusions
  • Partial List of Manufacturers and Suppliers
  • Abbreviation and Nomenclature
  • Acknowledgments
  • References
  • Further Information
  • 27. Acute Care Telemedicine - Nigel R. Armfield and Tim Donovan
  • 27.1 Introduction
  • 27.2 Definitions
  • 27.2.1 Telemedicine
  • 27.2.2 Acute Care Telemedicine
  • 27.3 Rationale for Telemedicine in Acute Care
  • 27.3.1 Service Availability
  • 27.3.2 Service Accessibility
  • 27.3.3 Health System Responses to Access Impediments
  • 27.3.4 Telemedicine as an Adjunct
  • 27.4 Potential Benefits of Telemedicine
  • 27.4.1 Patient and Families
  • 27.4.2 Clinician
  • 27.4.3 Health System
  • 27.4.4 Summary
  • 27.5 Domains of Acute Care and Telemedicine
  • 27.5.1 Trauma Care and Acute Care Surgery
  • 27.5.1.1 Case Example 1: Triage and Referral of Patients with Acute Burn Injuries
  • 27.5.1.2 Case Example 2: Rural Acute Trauma Care
  • 27.5.2 Emergency Care
  • 27.5.2.1 Case Example 3: Thrombolysis for Acute Cerebrovascular Ischemia
  • 27.5.2.2 Case Example 4: Telemedicine Diagnosis and Treatment of Acute Myocardial Infarction
  • 27.5.3 Urgent Care
  • 27.5.3.1 Case Example 5: Primary Care Pediatric Telemedicine Consultation for Acute Illness in Child-Care and School Settings
  • 27.5.3.2 Case Example 6: Community-Based Ear, Nose, and Throat (ENT) Screening with Telemedicine-Based Review and Community-Based Surgical Outreach for Children at High Risk of Ear Disease
  • 27.5.4 Short-Term Stabilization
  • 27.5.4.1 Case Example 7: Ambulance Dispatchers Monitoring Simulated Cardiac Arrest Calls from an Untrained Bystander with either Mobile Phone Video or Standard Call Interaction; Video Input Improved Understanding of Rescuer and Facilitated Assistance to Bystander
  • 27.5.4.2 Case Example 8: Qualitative Outcome Improved in Remote Canadian Trauma Patients with Stabilization Using Telesonography
  • 27.5.5 Prehospital Care
  • 27.5.5.1 Case Example 9: A Well-Designed Randomized Study of Mobile Stroke Assessment and Treatment (Including Telemedicine Use) on Time from Alarm to Therapy Decision in 100 Patients
  • 27.5.5.2 Case Example 10: Cost Analysis of Remote ECG Reading by Telemedicine
  • 27.5.6 Critical Care
  • 27.5.6.1 Case Example 11: Advice and Retrieval Management for Critically Ill Infants
  • 27.5.6.2 Case Example 12: Providing Remote Oversight of Intensive Care Units (e-ICU)
  • 27.5.7 Summary
  • 27.6 Conclusions
  • Abbreviations and Nomenclature
  • References
  • 28. Monitoring for Elderly Care: The Role of Wearable Sensors in Fall Detection and Fall Prediction Research - Kejia Wang, Stephen J. Redmond, and Nigel H. Lovell
  • 28.1 Introduction
  • 28.2 Personal Alarms
  • 28.3 Fall Detection and Activity Monitoring
  • 28.3.1 Unobtrusive Sensors
  • 28.3.2 Wearable Sensors
  • 28.4 Prevention and Fall Risk Assessments
  • 28.4.1 Sensor-Based Fall Prediction
  • 28.5 Measurements and Sensors
  • 28.5.1 Accelerometry
  • 28.5.2 Gyroscopy
  • 28.5.3 Other Sensors
  • 28.6 Feature Extraction and Analysis
  • 28.6.1 Features in Activity Monitoring
  • 28.6.2 Features in Fall Risk Estimation and Fall Prediction
  • 28.7 Fall Risk Model Training and Validation Strategies
  • 28.7.1 Validation by Clinical Fall Risk Assessment Scores
  • 28.7.2 Validation by Fall History
  • 28.7.3 Fall Risk Estimation Using Sensors on Supervised Activities
  • 28.7.4 Fall Risk Estimation Based on Activities of Daily Living
  • 28.8 Statistical Heterogeneity and Diversity in the Field
  • 28.8.1 Clinical Heterogeneity: Health Status, Ability, and Origin of Cohort
  • 28.8.2 Methodological Heterogeneity: Subject Classes, Data Collection Techniques, Analysis Methods, and Models
  • 28.8.3 Sample Sizes for Training and Validation
  • 28.9 Fusing Fall Detection, Daily Monitoring, and Risk Assessments
  • 28.10 Conclusion
  • Abbreviations
  • References
  • VOLUME II
  • Section I Medical Robotics, Telesurgery, and Image-Guided Surgery
  • Medical Robotics - Giancarlo Ferrigno, Alessandra Pedrocchi, Elena De Momi, Emilia Ambrosini, and Elisa Beretta
  • 1.1 Introduction to Medical Robotics
  • 1.1.1 Definitions and Standards
  • 1.1.2 Historical Perspective
  • 1.2 Surgical Robots
  • 1.2.1 General Requirements
  • 1.2.2 Control
  • 1.2.2.1 Position Control
  • 1.2.2.2 Shared Control
  • 1.2.2.3 Cooperative Control
  • 1.2.2.4 Teleoperation
  • 1.2.3 Recent Developments
  • 1.3 Rehabilitation Robots
  • 1.3.1 Introduction: Why Robots in Rehabilitation?
  • 1.3.2 The Mechanical Design: Exoskeleton versus End-Effector Robots—Some Examples
  • 1.3.3 The Problem of Control
  • 1.3.4 Impact on Clinical Practice and First Evidence-Based Studies of Rehabilitation Robotics
  • 1.3.5 Perspectives and Challenges
  • 1.4 Assistive Robots
  • 1.4.1 Introduction
  • 1.4.2 Physical Assistance Robots
  • 1.4.3 Mobility Aids
  • 1.4.4 Activity of Daily Living Support
  • 1.4.5 Future Perspectives
  • References
  • Modern Devices for Telesurgery - Florian Gosselin
  • 2.1 Introduction and History
  • 2.2 Main Components and Functionalities of a Robotic Telesurgery System
  • 2.2.1 General Overview
  • 2.2.2 Slave Surgery Robots
  • 2.2.3 Master Control Station
  • 2.2.4 Additional Equipment and Communication Means
  • 2.2.5 Main Functionalities
  • 2.2.5.1 Master-Slave Teleoperation
  • 2.2.5.2 Motion (and Force) Scaling
  • 2.2.5.3 Tremor Cancellation
  • 2.2.5.4 Shared Control
  • 2.2.5.5 Augmented Haptic Feedback
  • 2.3 Optimal Design of an Advanced Input Device for Telesurgery
  • 2.3.1 Design Guidelines
  • 2.3.2 Design Methodology
  • 2.3.3 Application to the Design of a Telesurgery Master Arm
  • 2.4 Conclusion
  • References
  • Microsurgery Systems - Leonardo S. Mattos, Diego Pardo, Emidio Olivieri, Giacinto Barresi, Jesus Ortiz, Loris Fichera, Nikhil Deshpande, and Veronica Penza
  • 3.1 Introduction
  • 3.2 Clinical Applications
  • 3.2.1 Pediatric and Fetal Surgery
  • 3.2.2 Ophthalmology
  • 3.2.3 Otolaryngology
  • 3.2.4 Plastic Surgery
  • 3.2.5 Nerve Surgery
  • 3.2.6 Urology
  • 3.3 Microsurgery Systems in Clinical Use
  • 3.4 Robot-Assisted Microsurgery Systems
  • 3.5 Current Challenges for Next-Generation Microsurgery Systems
  • 3.5.1 Miniaturization
  • 3.5.1.1 Materials and Robustness
  • 3.5.1.2 Maneuverability
  • 3.5.1.3 Sensing
  • 3.5.1.4 Actuation
  • 3.5.2 Microsurgical Tools
  • 3.5.2.1 Sensing Tools
  • 3.5.2.2 Actuation Tools
  • 3.5.3 Visualization Methods and Systems
  • 3.5.3.1 Visualization Devices
  • 3.5.3.2 Augmented Reality
  • 3.5.4 Haptic Feedback
  • 3.5.5 Control Interfaces and Ergonomics
  • 3.5.6 Surgical Planning
  • 3.5.6.1 Preoperative Reconstruction
  • 3.5.6.2 Intraoperative Registration
  • 3.5.7 Safety
  • 3.5.8 Autonomous Behaviors
  • 3.6 Conclusion
  • References
  • Image-Guided Microsurgery - Tom Williamson, Marco Caversaccio, Stefan Weber, and Brett Bell
  • 4.1 Introduction
  • 4.1.1 What Is Image Guidance?
  • 4.1.2 Why Image Guidance?
  • 4.2 Image Guidance Components and Workflow
  • 4.2.1 Image Acquisition
  • 4.2.2 Surgical Planning
  • 4.2.3 Registration
  • 4.2.4 Tracking
  • 4.2.5 Instrumentation and Instrument Guidance
  • 4.2.6 Information Presentation
  • 4.3 Image Guidance by Surgical Domain
  • 4.3.1 Image Guidance in Otorhinolaryngology
  • 4.3.2 Image Guidance in Neurosurgery
  • 4.3.3 Image Guidance in Ophthalmic Surgery
  • 4.3.4 Image Guidance in Other Surgeries
  • 4.4 Conclusions
  • References
  • Section II Telenursing, Personalized Care, Patient Care, and eEmergency Systems
  • eHealth and Telenursing - Sinclair Wynchank and Nathanael Sabbah
  • 5.1 Introduction
  • 5.2 How Telenursing Came About
  • 5.3 Nursing's Applications of Information and Communication Technology
  • 5.3.1 Computerized Decision-Support Systems
  • 5.3.2 Databases
  • 5.3.3 Telephony
  • 5.3.4 Videoconferencing
  • 5.3.5 mHealth
  • 5.3.6 Telenursing Services
  • 5.4 Telenursing's Healthcare Applications
  • 5.4.1 Triage
  • 5.4.2 Maternity and Pediatrics
  • 5.4.3 Posthospitalization
  • 5.4.4 Home Care
  • 5.4.5 Chronic Illnesses
  • 5.4.6 Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
  • 5.4.7 Mental Health
  • 5.4.8 Geriatrics
  • 5.5 Nurse Migration
  • 5.6 Telenursing and Distance Education
  • 5.6.1 Bases of e-learning
  • 5.6.2 Educating Laypersons
  • 5.6.3 Formal Instruction
  • 5.6.4 Web-Based Education
  • 5.6.5 Recent Trends
  • 5.7 Telenursing and Ethical Questions
  • 5.8 Discussion
  • 5.9 Conclusions
  • Abbreviations
  • Nomenclature
  • Acknowledgments
  • References
  • mHealth: Intelligent Closed-Loop Solutions for Personalized Healthcare - Carmen C. Y. Poon and Kevin K. F. Hung
  • 6.1 Introduction
  • 6.2 Historical Overview of mHealth
  • 6.2.1 Evolution from Telemedicine to mHealth
  • 6.2.2 Initial mHealth Applications
  • 6.2.3 Recent mHealth Applications
  • 6.3 Mobile Apps for mHealth
  • 6.3.1 Overview of mHealth Apps
  • 6.3.2 Regulation of mHealth Apps
  • 6.4 Cloud Computing
  • 6.4.1 Definitions
  • 6.4.2 Selected Applications
  • 6.5 Closed-Loop Solutions for Personalized Health Interventions
  • 6.5.1 Challenges in Sensor Design and Fabrication
  • 6.5.2 Challenges in Mining and Managing Big Health Data
  • 6.6 Conclusions
  • Abbreviations and Nomenclature
  • Acknowledgments
  • References
  • Patient Care Sensing and Monitoring Systems - Akihiro Kajiwara and Ryohei Nakamura
  • 7.1 Introduction
  • 7.2 Stepped-Frequency Modulation Ultrawideband Scheme
  • 7.2.1 Ultrawideband Impulse Radio Sensor
  • 7.2.2 Stepped-Frequency Modulation Ultrawideband Sensor
  • 7.2.3 Detect-and-Avoid and Spectrum Hole Technique
  • 7.3 Detect-and-Avoid Technique
  • 7.4 Patient Care Sensing and Monitoring System
  • 7.4.1 Sensing and Monitoring Algorithm
  • 7.4.2 Measurement Results
  • 7.5 Conclusions
  • References
  • Mobile Health Sleep Technologies - Anda Baharav
  • 8.1 Introduction
  • 8.1.1 Background about Sleep
  • 8.1.2 Sleep Problems and Their Implications
  • 8.2 Sleep and Technology
  • 8.2.1 The Role of Technology in General and Mobile Technology in Particular in Inducing Sleep Disorders
  • 8.2.2 Why Mobile Interface Is Most Suitable for Sleep
  • 8.3 Methods for Evaluating Sleep
  • 8.3.1 Subjective Information and Questionnaires
  • 8.3.2 Diaries
  • 8.3.3 Gold-Standard Polysomnography
  • 8.3.4 Electroencephalography
  • 8.3.5 Heart-Rate Variability
  • 8.3.6 Movement Actigraphy
  • 8.3.7 Behavioral: Audio-Video Monitoring
  • 8.4 Adding Treatment
  • 8.5 Players on the Market
  • 8.6 Advantages
  • 8.7 Next Steps
  • Abbreviations
  • References
  • Cardiovascular Disease Management via Electronic Health - Aimilia Gastounioti, Spyretta Golemati, Ioannis Andreadis, Vasileios Kolias, and Konstantina S. Nikita
  • 9.1 Introduction
  • 9.2 Computer-Aided Diagnosis
  • 9.2.1 Analysis of Cardiovascular Signals and Images
  • 9.2.2 Generating a Diagnostic Decision
  • 9.3 Telehealth Systems
  • 9.4 Mobile Applications
  • 9.5 Web-Based Telemedicine
  • 9.6 Semantic Interoperability and Ontologies
  • 9.7 Future Trends
  • 9.8 Conclusions
  • References
  • mHealth eEmergency Systems - Efthyvoulos Kyriacou, Andreas Panayides, and Panayiotis Constantinides
  • 10.1 Introduction
  • 10.2 Enabling Technologies
  • 10.2.1 Wireless Transmission Technologies
  • 10.2.2 Mobile Computing Platforms
  • 10.2.3 Biosignals
  • 10.2.4 Transmission of Digital Images
  • 10.2.5 Transmission of Digital Video
  • 10.3 Protocols and Processes for eEmergency Management and Response
  • 10.3.1 Emergency Management and Response: The Challenge of Coordination
  • 10.3.2 Computer-Aided Medical Dispatch Systems
  • 10.4 mHealth eEmergency Systems
  • 10.4.1 Overview
  • 10.4.2 Case Studies
  • 10.4.2.1 Case Study 1: Emergency Telemedicine—The AMBULANCE and Emergency 112 Projects
  • 10.4.2.2 Case Study 2: Diagnostically Robust Ultrasound Video Transmission over Emerging Wireless Networks
  • References
  • Section III Networks and Databases, Informatics, Record Management, Education, and Training
  • Global and Local Health Information, Databases, and Networks - Kostas Giokas, Yiannis Makris, Anna Paidi, Marios Prasinos, Dimitra Iliopoulou, and Dimitris Koutsouris
  • 11.1 Introduction
  • 11.2 Local Health Data
  • 11.2.1 Collection of Local Health Data
  • 11.2.2 Warehousing of Local Health Data
  • 11.2.3 Analysis of Local Health Data
  • 11.2.4 Local Health Data Network
  • 11.2.5 Challenges and Inefficiencies Associated with a Local Health Data Network
  • 11.2.5.1 Data Complexity and Integration
  • 11.2.5.2 Privacy, Security, and Patients’ Consent
  • 11.3 Databases
  • 11.3.1 Introduction
  • 11.3.2 Database Architectures
  • 11.3.2.1 Traditional Architectures
  • 11.3.2.2 Server System Architectures
  • 11.3.3 Parallel Systems
  • 11.3.4 Distributed Systems
  • 11.4 Database System Concepts in Healthcare
  • 11.4.1 World Health Organization Classifications
  • 11.4.2 General Online Health Databases
  • 11.4.2.1 European Health for All Database
  • 11.4.2.2 The National Institutes of Health Intramural Database
  • 11.4.2.3 Other European Online Health Databases
  • 11.5 Data Curation
  • 11.6 Interpretation of Health and Epidemiological Data—Biostatistics
  • 11.7 Global Health Data Management and Interpretation
  • References
  • Electronic Medical Records: Management and Implementation - Liping Liu
  • 12.1 Introduction
  • 12.2 Detailed Functional and Data Requirements
  • 12.2.1 Functional Requirements
  • 12.2.2 Data Requirements
  • 12.3 Implementation Issues and Solutions
  • 12.3.1 Implementation Issues
  • 12.3.2 Technological Solutions
  • 12.4 An Integrated e-Service Framework
  • 12.4.1 Justifications
  • 12.4.2 Implementation
  • 12.5 Conclusions
  • References
  • Public Health Informatics in Australia and around the World - Kathleen Gray and Fernando Martin Sanchez
  • 13.1 Introduction
  • 13.1.1 Information and Communication in Public Health
  • 13.1.2 Evolution of Public Health Informatics
  • 13.1.3 Key Concepts in Public Health Informatics
  • 13.1.3.1 Data Management in Public Health Informatics
  • 13.1.3.2 Information Management in Public Health Informatics
  • 13.1.3.3 Knowledge Management in Public Health Informatics
  • 13.2 Public Health Informatics in Australia
  • 13.2.1 Australia's Public Health
  • 13.2.2 Australian National Public Health Information Infrastructure
  • 13.2.3 Australian State and Territory Public Health Informatics Strategies
  • 13.2.4 Australian Local Government Public Health Informatics Initiatives
  • 13.2.4.1 Systematizing Data for Child and Family Nursing
  • 13.2.4.2 Immediate Information for Disaster Management
  • 13.2.4.3 Knowledge Translation for Obesity Prevention
  • 13.2.5 The Discipline and Profession of Public Health Informatics in Australia
  • 13.3 Current International Perspectives on Public Health Informatics
  • 13.3.1 Biosurveillance Methods in England and Wales
  • 13.3.2 Assessment of European Community Health Indicators
  • 13.3.3 Data Use Workshops in Tanzania
  • 13.3.4 The Impact of Technology on Sub-Saharan Hospitals
  • 13.4 Directions for Public Health Informatics
  • 13.4.1 Public Health 2.0
  • 13.4.2 Bidirectional Communication
  • 13.4.3 Exposome Informatics
  • 13.4.4 Advancing the Agenda for Public Health Informatics
  • 13.5 Conclusions
  • References
  • Ubiquitous Personal Health Records for Remote Regions - H. Lee Seldon, Jacey-Lynn Minoi, Mahmud Ahsan, and Ali Abdulwahab A. Al-Habsi
  • 14.1 Introduction
  • 14.1.1 Scope
  • 14.2 Personal Health Record Data Collection and Storage: Ubiquitous or Not?
  • 14.2.1 Constraints in Remote Regions: Healthcare Workers and the Web Are Not Ubiquitous
  • 14.2.2 Personal Health Record on Paper: Not Quite Ubiquitous
  • 14.2.3 Web-Based Personal Health Records
  • 14.2.3.1 Purely Web-Based Personal Health Records Are Not Quite Ubiquitous
  • 14.2.3.2 Web-Based Personal Health Records with Various Inputs and Outputs
  • 14.2.4 Personal Health Records on Stand-Alone Mobile Devices: Not Quite Ubiquitous
  • 14.2.4.1 Diabetes or Hypertension Management
  • 14.2.4.2 Diet and Exercise
  • 14.2.4.3 Personal Health Records
  • 14.2.5 Personal Health Records on Connected Devices: Maybe Ubiquitous
  • 14.2.5.1 OpenMRS, OpenRosa, JavaRosa, and Sana
  • 14.2.5.2 EPI Life and EPI Mini
  • 14.3 A Ubiquitous Personal Health Record for Remote Regions Must Involve Individuals and Include Phone-Based Records
  • 14.3.1 Examples: Portable Personal Health Records
  • 14.3.1.1 Portable Personal Health Records: Mobile Records
  • 14.3.1.2 Portable Personal Health Records: Web-Based Records
  • 14.3.1.3 Portable Personal Health Records: Ubiquitous Communications
  • 14.4 Contextual Information: The Icing on the Personal Health Records
  • 14.4.1 Contextual Information on the Web
  • 14.4.2 Retrieval of Contextual Information
  • 14.4.3 Integration into a Ubiquitous Personal Health Record System
  • 14.5 Conclusions
  • References
  • Education and Training for Supporting General Practitioners in the Use of Clinical Telehealth: A Needs Analysis - Sisira Edirippulige, Nigel R. Armfield, Liam Caffery, and Anthony C. Smith
  • 15.1 Introduction
  • 15.2 Methods
  • 15.2.1 Participants
  • 15.2.2 Survey Questions
  • 15.2.3 Analysis
  • 15.2.4 Ethics
  • 15.3 Results
  • 15.3.1 Characteristics of the Responding Practices
  • 15.3.2 Current and Planned Use of Telehealth
  • 15.3.3 Education and Training
  • 15.4 Discussions
  • 15.4.1 Telehealth Training
  • 15.5 Conclusions
  • References
  • Further Reading
  • Section IV Business Opportunities, Management and Services, and Web Applications
  • Delivering eHealthcare: Opportunities and Challenges - Deborah A. Helman, Eric J. Addeo, N. Iwan Santoso, David W. Walters, and Guy T. Helman
  • 16.1 Introduction
  • 16.2 Context: The Evolution of eHealth
  • 16.2.1 The Multidimensional Landscape of Healthcare Delivery: Associated Driving Forces
  • 16.2.2 Feasible Models
  • 16.2.3 Physicians’ and Patients’ Resistance and Readiness
  • 16.3 Delivering eHealthcare: Practical Applications
  • 16.3.1 Children's National Medical Center: Specialized Services
  • 16.3.2 Kaiser Permanente: A Healthcare System
  • 16.3.3 Misfit Wearables: Start-Ups
  • 16.4 The Value Chain Network Business Model
  • 16.4.1 Value, Value Drivers, and Value Propositions
  • 16.4.2 Identifying Value Drivers
  • 16.4.3 The Value Proposition
  • 16.4.4 Managing in the Value Chain Network
  • 16.4.5 Value and the Value Chain
  • 16.4.6 Applying the e-Value Chain to Healthcare
  • 16.5 Value Drivers and Value-Led Productivity: A Network Perspective
  • 16.5.1 Value Drivers as Network Performance Drivers
  • 16.5.2 Value Drivers as Productivity Components
  • 16.5.3 Assessing the Productivity and Competitive Advantage of the Value Proposition
  • 16.6 Technology Perspective
  • 16.6.1 Cloud Computing
  • 16.6.2 Smart Healthcare Personal Assistants
  • 16.6.3 Security and Privacy in eHealth
  • 16.7 Conclusions and Future Challenges
  • Abbreviations
  • References
  • Mobile Healthcare User Interface Design Application Strategies - Ann L. Fruhling, Sharmila Raman, and Scott McGrath
  • 17.1 Introduction
  • 17.2 Mobile Healthcare App User Interface Design Strategies
  • 17.2.1 Focusing on Essential Functions in the Mobile Environment
  • 17.2.2 Ease of Use
  • 17.2.3 Intuitive Interaction
  • 17.2.4 Consistency within a Family of Applications
  • 17.2.5 Matching Routine Work Flow
  • 17.2.6 Limiting Menu/Layer Display Structure
  • 17.2.7 Minimalist Aesthetics
  • 17.2.7.1 Log-In/Log-Out Guidelines
  • 17.2.8 Leveraging Agile Development Practices
  • 17.3 Using Mobile Device Simulators for Testing
  • 17.3.1 Aiming for Quick Response Time
  • 17.3.2 Physical Device Selection Considerations
  • 17.4 Example of Applying Healthcare Mobile Development Strategies
  • 17.4.1 Public Health Mobile Application Background
  • 17.4.2 Mobile Solution
  • 17.4.3 Mobile User Interface and System Guidelines
  • 17.4.4 Mobile Thin Client
  • 17.4.4.1 STATPack Mobile Implementation
  • 17.5 Conclusion
  • Acknowledgments
  • References
  • Epidemic Tracking and Disease Monitoring in Rural Areas: A Case Study in Pakistan - Hammad Qureshi, Arshad Ali, Shamila Keyani, and Atif Mumtaz
  • 18.1 Introduction
  • 18.2 Jaroka Tele-Healthcare System: A System for Disease Surveillance
  • 18.2.1 How Does the Jaroka Tele-Healthcare System Work?
  • 18.2.2 Mapping
  • 18.3 Disease Trends
  • 18.4 Conclusions
  • Acknowledgments
  • References
  • mHealth and Web Applications - Javier Pindter-Medina
  • 19.1 Introduction
  • 19.2 mHealth Today
  • 19.2.1 mHealth Based on Text Messaging
  • 19.2.2 mHealth and Smartphones
  • 19.2.3 Five Years of History of Smartphone-Based mHealth Devices
  • 19.2.3.1 2009
  • 19.2.3.2 2010
  • 19.2.3.3 2011
  • 19.2.3.4 2012
  • 19.2.3.5 2013
  • 19.2.4 mHealth and Other Technologies
  • 19.2.5 Emerging Trends and Areas of Interest in mHealth
  • 19.2.6 Health Informatics: The European Committee for Standardization ISO/IEEE 11703 Standards
  • 19.3 Wireless Technologies Used in mHealth
  • 19.4 Web Applications
  • 19.5 mHealth Challenges and Ethics
  • 19.6 Conclusions
  • References
  • Investigation and Assessment of Effectiveness of Knowledge Brokering on Web 2.0 in Health Sector in Quebec, Canada - Moktar Lamari and Saliha Ziam
  • 20.1 Summary
  • 20.2 Introduction
  • 20.3 General Approach to Knowledge Brokerage, Theory, and Definitions
  • 20.4 Public Health-Related Survey, the Data, and Data Analysis
  • 20.4.1 Survey Results, Findings, and Interpretations
  • 20.4.1.1 Instruments of Health-Related Knowledge Dissemination
  • 20.4.1.2 Beneficiaries of Knowledge Brokerage
  • 20.4.1.3 Networking and Interactions of Knowledge Brokers
  • 20.4.1.4 Perceived Impacts of New Knowledge on Decision-Making Process
  • 20.4.1.5 Determinants of the Perceived Impacts
  • 20.5 Conclusion
  • References
  • Section V Examples of Integrating Technologies: Virtual Systems, Image Processing, Biokinematics, Measurements, and VLSI
  • Virtual Doctor Systems for Medical Practices - Hamido Fujita and Enrique Herrera-Viedma
  • 21.1 Introduction
  • 21.2 Outline of Virtual Doctor System
  • 21.2.1 Health Symptom Estimation from Breathing Sound
  • 21.2.2 Avatar Screen Generation
  • 21.2.3 Virtual Doctor System Interaction Based on Universal Templates
  • 21.2.4 Transactional Analysis
  • 21.2.5 Patient Interaction with Virtual Doctor System Avatar
  • 21.3 Outline of Virtual Doctor System Diagnosis
  • 21.4 Review of Literature on Decision Support for Medical Diagnosis
  • 21.4.1 Decision-Support Systems
  • 21.4.2 Subjective Intelligence
  • 21.5 Reasoning Framework
  • 21.6 Fuzzy-Based Reasoning
  • 21.6.1 Fuzzy Linguistic Approach to Representing User Assessments
  • 21.6.2 Medical Reasoning in a Fuzzy Linguistic Context
  • 21.6.3 Medical Reasoning in a Multigranular Fuzzy Linguistic Context
  • 21.7 Conclusions
  • References
  • Synthetic Biometrics in Biomedical Systems - Kenneth Lai, Steven Samoil, Svetlana N. Yanushkevich, and Adrian Stoica
  • 22.1 Introduction
  • 22.2 Biometric Data and Systems
  • 22.3 Synthetic Biometrics
  • 22.4 Synthetic Face
  • 22.4.1 Analysis by Synthesis in Face Recognition
  • 22.4.2 Three-Dimensional Facial Images
  • 22.4.3 RGB-D Technologies
  • 22.4.4 Two-Dimensional Facial Gesture Tracking
  • 22.4.5 Modeling the Aging Face
  • 22.4.6 Face Reconstruction from DNA
  • 22.4.7 Behavioral Facial Synthesis: Expressions
  • 22.4.8 Animation as Behavioral Facial Synthesis
  • 22.5 Synthetic Fingerprints
  • 22.6 Synthetic Iris and Retina Images
  • 22.7 Synthetic Signatures
  • 22.7.1 Voice Synthesis
  • 22.8 Examples of the Usage of Synthetic Biometrics
  • 22.8.1 Example: Facial Nerve Disorder Modeling
  • 22.8.2 Decision-Making Support Systems
  • 22.8.3 Databases of Synthetic Biometric Information
  • 22.8.4 Medical Personnel Training
  • 22.8.5 Avatar Systems
  • 22.8.6 Rehabilitation Applications
  • 22.9 Conclusions
  • References
  • Performance Analysis of Transform-Based Medical Image-Compression Methods for Telemedicine - Sujitha Juliet and Elijah Blessing Rajsingh
  • 23.1 Introduction to Telemedicine
  • 23.1.1 Store-and-Forward Telemedicine
  • 23.1.2 Two-Way Interactive Telemedicine
  • 23.1.3 Remote Monitoring
  • 23.2 Challenges in Telemedicine
  • 23.3 Challenges of Image Compression in Telemedicine
  • 23.4 Overview of Transform-Based Image-Compression Methods
  • 23.5 Quality Control in Telemedicine
  • 23.6 Transform-Based Medical Image Compression
  • 23.6.1 Ripplet Transform-Based Medical Image Compression
  • 23.6.2 Bandelet Transform-Based Medical Image Compression
  • 23.6.3 Radon Transform-Based Medical Image Compression
  • 23.7 Set Partitioning in Hierarchical Trees Encoder
  • 23.8 Results and Discussions
  • 23.8.1 Analysis of Image Quality Based on Peak Signal-to-Noise Ratio
  • 23.8.2 Analysis of Image Quality Based on Structural Similarity Index Measure
  • 23.8.3 Analysis of Compression Ratio
  • 23.8.4 Analysis of Computational Time
  • 23.8.5 Analysis of Subjective Assessment
  • 23.9 Conclusions
  • 23.10 Future Scope
  • Acknowledgments
  • References
  • Tracking the Position and Orientation of Ultrasound Probe for Image-Guided Surgical Procedures - Basem F. Yousef
  • 24.1 Introduction
  • 24.2 Mechanism Description
  • 24.2.1 Stabilizer Design
  • 24.2.2 Tracker Design
  • 24.3 Tracker Calibration
  • 24.4 Materials and Dimensions
  • 24.5 Validation and Results
  • 24.6 Conclusions
  • Acknowledgments
  • References
  • Biokinematics for Mobility: Theory, Sensors, and Wireless Measurements - Atila Yilmaz and Tuna Orhanli
  • 25.1 Introduction
  • 25.1.1 General Review
  • 25.1.2 Basic Definitions
  • 25.1.3 Anatomical Reference System
  • 25.2 Types of Kinematics
  • 25.2.1 Forward Kinematics
  • 25.2.2 Inverse Kinematics
  • 25.2.3 Joint Velocity Kinematics
  • 25.3 Measurements of Human Motion Kinematics
  • 25.3.1 Image-Based Measurement Techniques
  • 25.3.1.1 Cinematography
  • 25.3.1.2 Television-Type Systems
  • 25.3.1.3 Optoelectronic Measurements
  • 25.3.2 Direct-Measurement Systems
  • 25.3.2.1 Resistive Measurement Systems
  • 25.3.2.2 Inertial Sensors
  • 25.3.2.3 Electromagnetic Systems
  • 25.4 Wireless Measurement Systems for Biokinematics
  • 25.4.1 Background on Wireless Measurement Systems
  • 25.4.2 Applications Related to Wireless Kinematic Measurements
  • 25.5 Biodriven Hands, Prostheses, and Exoskeletal Ortheses
  • 25.6 Conclusion
  • Acknowledgments
  • References
  • Biopotentials and Electrophysiology Measurements - Nitish V. Thakor
  • 26.1 Introduction
  • 26.2 The Origins of Biopotentials
  • 26.3 Biopotentials
  • 26.3.1 Electrocardiogram
  • 26.3.2 Electroencephalogram
  • 26.3.3 Electromyogram
  • 26.3.4 Electrooculogram
  • 26.4 The Principles of Biopotential Measurements
  • 26.5 Electrodes for Biopotential Recordings
  • 26.5.1 Silver-Silver Chloride Electrodes
  • 26.5.2 Gold Electrodes
  • 26.5.3 Conductive Polymer Electrodes
  • 26.5.4 Metal or Carbon Electrodes
  • 26.5.5 Needle Electrodes
  • 26.6 The Biopotential Amplifier
  • 26.6.1 The Instrumentation Amplifier
  • 26.6.2 The Electrocardiogram Amplifier
  • 26.6.3 The Electroencephalogram Amplifier
  • 26.6.4 The Electromyogram Amplifier
  • 26.6.5 The Electrooculogram Amplifier
  • 26.7 Circuit Enhancements
  • 26.7.1 Electrical Interference Reduction
  • 26.7.2 Filtering
  • 26.7.3 Artifact Reduction
  • 26.7.4 Electrical Isolation
  • 26.7.5 Defibrillation Protection
  • 26.8 Measurement Practices
  • 26.8.1 Electrode Use
  • 26.8.2 Skin Preparation
  • 26.8.3 Reduction of Environmental Interference
  • 26.9 Conclusions
  • References
  • Sensor Signal Conditioning for Biomedical Instrumentation - Tomas E. Ward
  • 27.1 Introduction
  • 27.2 Sensors
  • 27.3 Signal Conditioning
  • 27.3.1 The Operational Amplifier
  • 27.3.2 Signal Amplification with Operational Amplifiers
  • 27.3.2.1 Example: Piezoelectric Transducer Compensation
  • 27.3.3 The Instrumentation Amplifier
  • 27.4 The Analog-to-Digital Conversion Process
  • 27.4.1 The Sampling Process
  • 27.4.2 The Quantization Process
  • 27.4.3 Antialiasing Filters
  • 27.4.4 Oversampling and Decimation
  • 27.4.4.1 Oversampling
  • 27.4.4.2 Multisampling
  • 27.5 Integrated Solutions
  • 27.6 Isolation Circuits
  • 27.6.1 Methods of Isolation
  • 27.6.1.1 Capacitive Isolation Amplifiers
  • 27.6.1.2 Optical Isolation Amplifiers
  • 27.6.1.3 Magnetic Isolation Amplifiers
  • 27.6.1.4 Digital Isolation
  • 27.7 Conclusions
  • References
  • Sensor-Based Human Activity Recognition Techniques - Donghai Guan, Weiwei Yuan, and Sungyoung Lee
  • 28.1 Introduction
  • 28.2 Video Sensor-Based Activity Recognition
  • 28.2.1 Video Sensor-Based Activity Recognition Applications
  • 28.2.2 Feature Extraction in Video Sensor-Based Activity Recognition
  • 28.2.2.1 Global Features of Video Sensor-Based Activity Recognition
  • 28.2.2.2 Local Features of Video Sensor-Based Activity Recognition
  • 28.2.3 Recognition Techniques in Video Sensor-Based Activity Recognition
  • 28.2.3.1 Nonparametric Techniques
  • 28.2.3.2 Volumetric Techniques
  • 28.2.3.3 Temporal-Independent Techniques
  • 28.2.3.4 Temporal-Based Techniques
  • 28.3 Wearable Sensor-Based Activity Recognition
  • 28.3.1 Applications of Wearable Sensor-Based Activity Recognition
  • 28.3.2 Sensors in Wearable Sensor-Based Activity Recognition
  • 28.3.3 Recognition Techniques for Wearable Sensor-Based Activity Recognition
  • 28.3.3.1 Supervised Recognition Techniques
  • 28.3.3.2 Unsupervised Recognition Techniques
  • 28.4 Object Usage-Based Activity Recognition
  • 28.4.1 Sensors in Object Usage-Based Activity Recognition
  • 28.4.1.1 Radio Frequency Identification-Based Sensors
  • 28.4.1.2 Binary Sensors
  • 28.4.2 Recognition Algorithms
  • 28.5 Comparisons of Video Sensor-Based, Wearable Sensor-Based, and Object Usage-Based Activity Recognition
  • 28.5.1 Video Sensor-Based Activity Recognition
  • 28.5.2 Wearable Sensor-Based Activity Recognition
  • 28.5.3 Object Usage-Based Activity Recognition
  • 28.6 Challenges in Sensor-Based Activity Recognition
  • References
  • Very Large-Scale Integration Bioinstrumentation Circuit Design and Nanopore Applications - Jungsuk Kim and William B. Dunbar
  • 29.1 Introduction
  • 29.1.1 Nanopore Method and Measurement
  • 29.1.2 Design Requirements
  • 29.2 Very Large-Scale Integration Bioinstrumentation Circuit Design
  • 29.2.1 Noise Analysis
  • 29.2.2 Low-Noise Core-Amplifier Design
  • 29.2.3 Dead-Time Compensation
  • 29.2.4 Input Offset Voltage Cancellation
  • 29.3 Implementation and Experimental Results
  • 29.4 Scalability and Multichannel Implementation
  • References
  • Wireless Electrical Impedance Tomography: LabVIEW-Based Automatic Electrode Switching - Tushar Kanti Bera
  • 30.1 Introduction
  • 30.2 Electrical Impedance Tomography Wireless Instrumentation
  • 30.2.1 Constant-Current Injector
  • 30.2.2 Electrode Switching in Electrical Impedance Tomography
  • 30.2.3 Electrode Switching Module
  • 30.2.4 WL-DDTS with Radio-Frequency Transmitter and Receiver
  • 30.3 Digital Logic for Electrode Switching in LabVIEW-Based Algorithms
  • 30.4 Electrode Protocols and Data Generation
  • 30.4.1 Neighboring Method
  • 30.4.2 Opposite Method
  • 30.5 Wireless Experimental Data Collection and Image Reconstruction
  • 30.5.1 Advantages and Disadvantages
  • 30.6 Mathematical Approach and Electrode Models
  • 30.6.1 Continuum Model
  • 30.6.2 Gap Model
  • 30.6.3 Shunt Model
  • 30.6.4 Complete Electrode Model
  • 30.7 Results and Discussion of Results
  • 30.8 Conclusions
  • References