Electric Vehicle Machines and Drives: Design, Analysis and Application

Editor/Author Chau, K.T.
Publication Year: 2015
Publisher: Wiley

Single-User Purchase Price: $140.00
Unlimited-User Purchase Price: $210.00
ISBN: 978-1-11-875252-4
Category: Technology & Engineering - Motor vehicles
Image Count: 419
Book Status: Available
Table of Contents

This resource provides a comprehensive coverage of electric machines and drives for electric and hybrid vehicles, including both electric propulsion and hybrid propulsion.

Share this

Table of Contents

  • Preface
  • Organization of This Book
  • Acknowledgments
  • About the Author
  • 1 Introduction
  • 1.1 What Is an Electric Vehicle?
  • 1.2 Overview of EV Challenges
  • 1.2.1 Pure Electric Vehicle
  • 1.2.2 Hybrid Electric Vehicle
  • 1.2.3 Gridable Hybrid Electric Vehicle
  • 1.2.4 Fuel–Cell Electric Vehicle
  • 1.3 Overview of EV Technologies
  • 1.3.1 Motor Drive Technology
  • 1.3.2 Energy Source Technology
  • 1.3.3 Battery Charging Technology
  • 1.3.4 Vehicle–to–Grid Technology
  • References
  • 2 DC Motor Drives
  • 2.1 System Configurations
  • 2.2 DC Machines
  • 2.2.1 Structure of DC Machines
  • 2.2.2 Principle of DC Machines
  • 2.2.3 Modeling of DC Machines
  • 2.3 DC–DC Converters
  • 2.3.1 DC–DC Converter Topologies
  • 2.3.2 Soft-Switching DC–DC Converter Topologies
  • 2.4 DC Motor Control
  • 2.4.1 Speed Control
  • 2.4.2 Regenerative Braking
  • 2.5 Design Criteria of DC Motor Drives for EVs
  • 2.6 Design Example for EVs
  • 2.7 Application Examples of DC Motor Drives in EVs
  • 2.8 Fading Technology for EVs?
  • References
  • 3 Induction Motor Drives
  • 3.1 System Configurations
  • 3.2 Induction Machines
  • 3.2.1 Structure of Induction Machines
  • 3.2.2 Principle of Induction Machines
  • 3.2.3 Modeling of Induction Machines
  • 3.3 Inverters for Induction Motors
  • 3.3.1 PWM Switching Inverters
  • 3.3.2 Soft–Switching Inverters
  • 3.4 Induction Motor Control
  • 3.4.1 Variable–Voltage Variable–Frequency Control
  • 3.4.2 Field–Oriented Control
  • 3.4.3 Direct Torque Control
  • 3.5 Design Criteria of Induction Motor Drives for EVs
  • 3.6 Design Example of Induction Motor Drives for EVs
  • 3.7 Application Examples of Induction Motor Drives in EVs
  • 3.8 Matured Technology for EVs?
  • References
  • 4 Permanent Magnet Brushless Motor Drives
  • 4.1 PM Materials
  • 4.2 System Configurations
  • 4.3 PM Brushless Machines
  • 4.3.1 Structure of PM Brushless Machines
  • 4.3.2 Principle of PM Brushless Machines
  • 4.3.3 Modeling of PM Brushless Machines
  • 4.4 Inverters for PM Brushless Motors
  • 4.4.1 Inverter Requirements
  • 4.4.2 Switching Schemes for Brushless AC Operation
  • 4.4.3 Switching Schemes for Brushless DC Operation
  • 4.5 PM Brushless Motor Control
  • 4.5.1 PM Synchronous Motor Control
  • 4.5.2 PM Brushless DC Motor Control
  • 4.6 Design Criteria of PM Brushless Motor Drives for EVs
  • 4.7 Design Examples of PM Brushless Motor Drives for EVs
  • 4.7.1 Planetary–Geared PM Synchronous Motor Drive
  • 4.7.2 Outer–Rotor PM Brushless DC Motor Drive
  • 4.8 Application Examples of PM Brushless Motor Drives in EVs
  • 4.9 Preferred Technology for EVs?
  • References
  • 5 Switched Reluctance Motor Drives
  • 5.1 System Configurations
  • 5.2 SR Machines
  • 5.2.1 Structure of SR Machines
  • 5.2.2 Principle of SR Machines
  • 5.2.3 Modeling of SR Machines
  • 5.3 SR Converters
  • 5.3.1 SR Converter Topologies
  • 5.3.2 Soft–Switching SR Converter Topologies
  • 5.3.3 Comparison of SR Converters for EVs
  • 5.4 SR Motor Control
  • 5.4.1 Speed Control
  • 5.4.2 Torque–Ripple Minimization Control
  • 5.4.3 Position Sensorless Control
  • 5.5 Design Criteria of SR Motor Drives for EVs
  • 5.5.1 Machine Initialization
  • 5.5.2 Suppression of Acoustic Noise
  • 5.6 Examples of SR Motor Drives for EVs
  • 5.6.1 Planetary–Geared SR Motor Drive
  • 5.6.2 Outer–Rotor In–Wheel SR Motor Drive
  • 5.7 Application Examples of SR Motor Drives in EVs
  • 5.8 Maturing Technology for EVs?
  • References
  • 6 Stator–Permanent Magnet Motor Drives
  • 6.1 Stator-PM versus Rotor-PM
  • 6.2 System Configurations
  • 6.3 Doubly-Salient PM Motor Drives
  • 6.4 Flux-Reversal PM Motor Drives
  • 6.5 Flux-Switching PM Motor Drives
  • 6.6 Hybrid-Excited PM Motor Drives
  • 6.7 Flux-Mnemonic PM Motor Drives
  • 6.8 Design Criteria of Stator-PM Motor Drives for EVs
  • 6.9 Design Examples of Stator-PM Motor Drives for EVs
  • 6.9.1 Outer–Rotor Hybrid–Excited DSPM Motor Drive
  • 6.9.2 Outer–Rotor Flux–Mnemonic DSPM Motor Drive
  • 6.10 Potential Applications of Stator-PM Motor Drives in EVs
  • References
  • 7 Magnetic–Geared Motor Drives
  • 7.1 System Configurations
  • 7.2 Magnetic Gears
  • 7.2.1 Converted Magnetic Gears
  • 7.2.2 Field–Modulated Magnetic Gears
  • 7.3 MG Machines
  • 7.3.1 Principle of MG Machines
  • 7.3.2 Modeling of MG Machines
  • 7.4 Inverters for MG Motors
  • 7.5 MG Motor Control
  • 7.6 Design Criteria of MG Motor Drives for EVs
  • 7.7 Design Examples of MG Motor Drives for EVs
  • 7.7.1 MG PM Brushless DC In–Wheel Motor Drive
  • 7.7.2 MG PM Brushless AC In–Wheel Motor Drive
  • 7.8 Potential Applications of MG Motor Drives in EVs
  • References
  • 8 Vernier Permanent Magnet Motor Drives
  • 8.1 System Configurations
  • 8.2 Vernier PM Machines
  • 8.2.1 Vernier PM versus Magnetic–Geared PM
  • 8.2.2 Structure of Vernier PM Machines
  • 8.2.3 Principle of Vernier PM Machines
  • 8.2.4 Modeling of Vernier PM Machines
  • 8.3 Inverters for Vernier PM Motors
  • 8.4 Vernier PM Motor Control
  • 8.5 Design Criteria of Vernier PM Motor Drives for EVs
  • 8.6 Design Examples of Vernier PM Motor Drives for EVs
  • 8.6.1 Outer–Rotor Vernier PM Motor Drive
  • 8.6.2 Outer–Rotor Flux–Controllable Vernier PM Motor Drive
  • 8.7 Potential Applications of Vernier PM Motor Drives in EVs
  • References
  • 9 Advanced Magnetless Motor Drives
  • 9.1 What Is Advanced Magnetless?
  • 9.2 System Configurations
  • 9.3 Synchronous Reluctance Motor Drives
  • 9.4 Doubly-Salient DC Motor Drives
  • 9.5 Flux-Switching DC Motor Drives
  • 9.6 Vernier Reluctance Motor Drives
  • 9.7 Doubly-Fed Vernier Reluctance Motor Drives
  • 9.8 Axial-Flux Magnetless Motor Drives
  • 9.9 Design Criteria of Advanced Magnetless Motor Drives for EVs
  • 9.10 Design Examples of Advanced Magnetless Motor Drives for EVs
  • 9.10.1 Multi–tooth Doubly–Salient DC Motor Drive
  • 9.10.2 Multi–tooth Flux–Switching DC Motor Drive
  • 9.10.3 Axial–Flux Doubly–Salient DC Motor Drive
  • 9.10.4 Axial–Flux Flux–Switching DC Motor Drive
  • 9.11 Potential Applications of Advanced Magnetless Motor Drives in EVs
  • References
  • 10 Integrated–Starter–Generator Systems
  • 10.1 Classification of HEVs
  • 10.2 ISG System Configurations
  • 10.3 ISG Machines
  • 10.4 ISG Operations
  • 10.4.1 Cranking
  • 10.4.2 Electricity Generation
  • 10.4.3 Idle Stop–Start
  • 10.4.4 Regenerative Braking
  • 10.4.5 Power Assistance
  • 10.5 Design Criteria of ISG Systems
  • 10.6 Design Examples of ISG Systems
  • 10.6.1 Double–Stator PM Synchronous Machine–Based ISG System
  • 10.6.2 Hybrid–Excited Doubly–Salient PM Machine–Based ISG System
  • 10.7 Application Examples of ISG Systems in HEVs
  • 10.8 Matured Technology for HEVs?
  • References
  • 11 Planetary–Geared Electric Variable Transmission Systems
  • 11.1 System Configurations
  • 11.2 Planetary Gears
  • 11.3 Input-Split PG EVT Systems
  • 11.3.1 Toyota Hybrid System
  • 11.3.2 Ford Hybrid System
  • 11.4 Compound-Split PG EVT Systems
  • 11.4.1 GM Two-Mode Hybrid System
  • 11.4.2 Renault Hybrid System
  • 11.4.3 Timken Hybrid System
  • 11.5 Design Criteria of PG EVT Systems
  • 11.6 Design Example of PG EVT Systems
  • 11.6.1 PM Synchronous PG EVT System Configuration
  • 11.6.2 PM Synchronous Machine Design
  • 11.6.3 PM Synchronous Machine Analysis
  • 11.7 Application Examples of PG EVT Systems in HEVs
  • 11.8 Matured Technology for HEVs?
  • References
  • 12 Double–Rotor Electric Variable Transmission Systems
  • 12.1 System Configurations
  • 12.2 Double-Rotor Machines
  • 12.2.1 Multi–port Machine Concept
  • 12.2.2 DR Machine Structure
  • 12.3 Basic Double-Rotor EVT Systems
  • 12.3.1 DR EVT Structure
  • 12.3.2 DR EVT Modeling
  • 12.3.3 DR EVT Operation
  • 12.4 Advanced Double-Rotor EVT Systems
  • 12.4.1 PM DR EVT System
  • 12.4.2 SR DR EVT System
  • 12.4.3 Axial–Flux DR EVT System
  • 12.4.4 Advanced Magnetless DR EVT System
  • 12.5 Design Criteria of DR EVT Systems
  • 12.6 Design Example of DR EVT Systems
  • 12.6.1 DSDC DR EVT System Configuration
  • 12.6.2 DSDC DR Machine Design
  • 12.6.3 DSDC DR Machine Analysis
  • 12.7 Potential Applications of DR EVT Systems in HEVs
  • References
  • 13 Magnetic–Geared Electric Variable Transmission Systems
  • 13.1 System Configurations
  • 13.2 Multi-port Magnetic Gears
  • 13.2.1 Magnetic Planetary Gears
  • 13.2.2 Magnetic Concentric Gears
  • 13.3 Magnetic Planetary-Geared EVT System
  • 13.4 Magnetic Concentric-Geared EVT System
  • 13.5 Design Criteria of MG EVT Systems
  • 13.6 Design Example of MG EVT Systems
  • 13.6.1 MCG EVT System Configuration
  • 13.6.2 Integrated MCG Machine Design
  • 13.6.3 Integrated MCG Machine Analysis
  • 13.7 Potential Applications of MG EVT Systems in HEVs
  • References