Handbook of Modern Sensors: Physics, Designs, and Applications

Editor/Author Fraden, Jacob
Publication Year: 2016
Publisher: Springer Science+Business Media

ISBN: 978-3-319-19302-1
Category: Technology & Engineering - Technology
Image Count: 523
Book Status: Pending
Predicted Release Month: June 2017
Table of Contents

This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications.

Share this

Table of Contents

  • Preface
  • About the Author
  • 1 Data Acquisition
  • 1.1 Sensors, Signals, and Systems
  • 1.2 Sensor Classification
  • 1.3 Units of Measurements
  • References
  • 2 Transfer Functions
  • 2.1 Mathematical Models
  • 2.1.1 Concept
  • 2.1.2 Functional Approximations
  • 2.1.3 Linear Regression
  • 2.1.4 Polynomial Approximations
  • 2.1.5 Sensitivity
  • 2.1.6 Linear Piecewise Approximation
  • 2.1.7 Spline Interpolation
  • 2.1.8 Multidimensional Transfer Functions
  • 2.2 Calibration
  • 2.3 Computation of Parameters
  • 2.4 Computation of a Stimulus
  • 2.4.1 Use of Analytical Equation
  • 2.4.2 Use of Linear Piecewise Approximation
  • 2.4.3 Iterative Computation of Stimulus (Newton Method)
  • References
  • 3 Sensor Characteristics
  • 3.1 Sensors for Mobile Communication Devices
  • 3.1.1 Requirements to MCD Sensors
  • 3.1.2 Integration
  • 3.2 Span (Full-Scale Input)
  • 3.3 Full-Scale Output
  • 3.4 Accuracy
  • 3.5 Calibration Error
  • 3.6 Hysteresis
  • 3.7 Nonlinearity
  • 3.8 Saturation
  • 3.9 Repeatability
  • 3.10 Dead Band
  • 3.11 Resolution
  • 3.12 Special Properties
  • 3.13 Output Impedance
  • 3.14 Output Format
  • 3.15 Excitation
  • 3.16 Dynamic Characteristics
  • 3.17 Dynamic Models of Sensor Elements
  • 3.17.1 Mechanical Elements
  • 3.17.2 Thermal Elements
  • 3.17.3 Electrical Elements
  • 3.17.4 Analogies
  • 3.18 Environmental Factors
  • 3.19 Reliability
  • 3.19.1 MTTF
  • 3.19.2 Extreme Testing
  • 3.19.3 Accelerated Life Testing
  • 3.20 Application Characteristics
  • 3.21 Uncertainty
  • References
  • 4 Physical Principles of Sensing
  • 4.1 Electric Charges, Fields, and Potentials
  • 4.2 Capacitance
  • 4.2.1 Capacitor
  • 4.2.2 Dielectric Constant
  • 4.3 Magnetism
  • 4.3.1 Faraday Law
  • 4.3.2 Permanent Magnets
  • 4.3.3 Coil and Solenoid
  • 4.4 Induction
  • 4.4.1 Lenz Law
  • 4.4.2 Eddy Currents
  • 4.5 Resistance
  • 4.5.1 Specific Resistivity
  • 4.5.2 Temperature Sensitivity of a Resistor
  • 4.5.3 Strain Sensitivity of a Resistor
  • 4.5.4 Moisture Sensitivity of a Resistor
  • 4.6 Piezoelectric Effect
  • 4.6.1 Ceramic Piezoelectric Materials
  • 4.6.2 Polymer Piezoelectric Films
  • 4.7 Pyroelectric Effect
  • 4.8 Hall Effect
  • 4.9 Thermoelectric Effects
  • 4.9.1 Seebeck Effect
  • 4.9.2 Peltier Effect
  • 4.10 Sound Waves
  • 4.11 Temperature and Thermal Properties of Materials
  • 4.11.1 Temperature Scales
  • 4.11.2 Thermal Expansion
  • 4.11.3 Heat Capacity
  • 4.12 Heat Transfer
  • 4.12.1 Thermal Conduction
  • 4.12.2 Thermal Convection
  • 4.12.3 Thermal Radiation
  • References
  • 5 Optical Components of Sensors
  • 5.1 Light
  • 5.1.1 Energy of Light Quanta
  • 5.1.2 Light Polarization
  • 5.2 Light Scattering
  • 5.3 Geometrical Optics
  • 5.4 Radiometry
  • 5.5 Photometry
  • 5.6 Windows
  • 5.7 Mirrors
  • 5.7.1 Coated Mirrors
  • 5.7.2 Prismatic Mirrors
  • 5.8 Lenses
  • 5.8.1 Curved Surface Lenses
  • 5.8.2 Fresnel Lenses
  • 5.8.3 Flat Nanolenses
  • 5.9 Fiber Optics and Waveguides
  • 5.10 Optical Efficiency
  • 5.10.1 Lensing Effect
  • 5.10.2 Concentrators
  • 5.10.3 Coatings for Thermal Absorption
  • 5.10.4 Antireflective Coating (ARC)
  • References
  • 6 Interface Electronic Circuits
  • 6.1 Signal Conditioners
  • 6.1.1 Input Characteristics
  • 6.1.2 Amplifiers
  • 6.1.3 Operational Amplifiers
  • 6.1.4 Voltage Follower
  • 6.1.5 Charge- and Current-to-Voltage Converters
  • 6.1.6 Light-to-Voltage Converters
  • 6.1.7 Capacitance-to-Voltage Converters
  • 6.1.8 Closed-Loop Capacitance-to-Voltage Converters
  • 6.2 Sensor Connections
  • 6.2.1 Ratiometric Circuits
  • 6.2.2 Differential Circuits
  • 6.2.3 Wheatstone Bridge
  • 6.2.4 Null-Balanced Bridge
  • 6.2.5 Bridge Amplifiers
  • 6.3 Excitation Circuits
  • 6.3.1 Current Generators
  • 6.3.2 Voltage Generators
  • 6.3.3 Voltage References
  • 6.3.4 Oscillators
  • 6.4 Analog-to-Digital Converters
  • 6.4.1 Basic Concepts
  • 6.4.2 V/F Converters
  • 6.4.3 PWM Converters
  • 6.4.4 R/F Converters
  • 6.4.5 Successive-Approximation Converter
  • 6.4.6 Resolution Extension
  • 6.4.7 ADC Interface
  • 6.5 Integrated Interfaces
  • 6.5.1 Voltage Processor
  • 6.5.2 Inductance Processor
  • 6.6 Data Transmission
  • 6.6.1 Two-Wire Transmission
  • 6.6.2 Four-Wire Transmission
  • 6.7 Noise in Sensors and Circuits
  • 6.7.1 Inherent Noise
  • 6.7.2 Transmitted Noise
  • 6.7.3 Electric Shielding
  • 6.7.4 Bypass Capacitors
  • 6.7.5 Magnetic Shielding
  • 6.7.6 Mechanical Noise
  • 6.7.7 Ground Planes
  • 6.7.8 Ground Loops and Ground Isolation
  • 6.7.9 Seebeck Noise
  • 6.8 Batteries for Low-Power Sensors
  • 6.8.1 Primary Cells
  • 6.8.2 Secondary Cells
  • 6.8.3 Supercapacitors
  • 6.9 Energy Harvesting
  • 6.9.1 Light Energy Harvesting
  • 6.9.2 Far-Field Energy Harvesting
  • 6.9.3 Near-Field Energy Harvesting
  • References
  • 7 Detectors of Humans
  • 7.1 Ultrasonic Detectors
  • 7.2 Microwave Motion Detectors
  • 7.3 Micropower Impulse Radars
  • 7.4 Ground Penetrating Radars
  • 7.5 Linear Optical Sensors (PSD)
  • 7.6 Capacitive Occupancy Detectors
  • 7.7 Triboelectric Detectors
  • 7.8 Optoelectronic Motion Detectors
  • 7.8.1 Sensor Structures
  • 7.8.2 Multiple Detecting Elements
  • 7.8.3 Complex Sensor Shape
  • 7.8.4 Image Distortion
  • 7.8.5 Facet Focusing Elements
  • 7.8.6 Visible and Near-IR Light Motion Detectors
  • 7.8.7 Mid- and Far-IR Detectors
  • 7.8.8 Passive Infrared (PIR) Motion Detectors
  • 7.8.9 PIR Detector Efficiency Analysis
  • 7.9 Optical Presence Sensors
  • 7.9.1 Photoelectric Beam
  • 7.9.2 Light Reflection Detectors
  • 7.10 Pressure-Gradient Sensors
  • 7.11 2-D Pointing Devices
  • 7.12 Gesture Sensing (3-D Pointing)
  • 7.12.1 Inertial and Gyroscopic Mice
  • 7.12.2 Optical Gesture Sensors
  • 7.12.3 Near-Field Gesture Sensors
  • 7.13 Tactile Sensors
  • 7.13.1 Switch Sensors
  • 7.13.2 Piezoelectric Tactile Sensors
  • 7.13.3 Piezoresistive Tactile Sensors
  • 7.13.4 Tactile MEMS Sensors
  • 7.13.5 Capacitive Touch Sensors
  • 7.13.6 Optical Touch Sensors
  • 7.13.7 Optical Fingerprint Sensors
  • References
  • 8 Presence, Displacement, and Level
  • 8.1 Potentiometric Sensors
  • 8.2 Piezoresistive Sensors
  • 8.3 Capacitive Sensors
  • 8.4 Inductive and Magnetic Sensors
  • 8.4.1 LVDT and RVDT
  • 8.4.2 Transverse Inductive Sensor
  • 8.4.3 Eddy Current Probes
  • 8.4.4 Pavement Loops
  • 8.4.5 Metal Detectors
  • 8.4.6 Hall-Effect Sensors
  • 8.4.7 Magnetoresistive Sensors
  • 8.4.8 Magnetostrictive Detector
  • 8.5 Optical Sensors
  • 8.5.1 Optical Bridge
  • 8.5.2 Proximity Detector with Polarized Light
  • 8.5.3 Prismatic and Reflective Sensors
  • 8.5.4 Fabry-Perot Sensors
  • 8.5.5 Fiber Bragg Grating Sensors
  • 8.5.6 Grating Photomodulators
  • 8.6 Thickness and Level Sensors
  • 8.6.1 Ablation Sensors
  • 8.6.2 Film Sensors
  • 8.6.3 Cryogenic Liquid Level Sensors
  • References
  • 9 velocity and acceleration
  • 9.1 stationary velocity sensors
  • 9.1.1 Linear Velocity
  • 9.1.2 Rotary Velocity Sensors (Tachometers)
  • 9.2 Inertial Rotary Sensors
  • 9.2.1 Rotor Gyroscope
  • 9.2.2 Vibrating Gyroscopes
  • 9.2.3 Optical (Laser) Gyroscopes
  • 9.3 Inertial Linear Sensors (Accelerometers)
  • 9.3.1 Transfer Function and Characteristics
  • 9.3.2 Inclinometers
  • 9.3.3 Seismic Sensors
  • 9.3.4 Capacitive Accelerometers
  • 9.3.5 Piezoresistive Accelerometers
  • 9.3.6 Piezoelectric Accelerometers
  • 9.3.7 Thermal Accelerometers
  • 9.3.8 Closed-Loop Accelerometers
  • References
  • 10 Force and Strain
  • 10.1 Basic Considerations
  • 10.2 Strain Gauges
  • 10.3 Pressure-Sensitive Films
  • 10.4 Piezoelectric Force Sensors
  • 10.5 Piezoelectric Cables
  • 10.6 Optical Force Sensors
  • References
  • 11 Pressure Sensors
  • 11.1 Concept of Pressure
  • 11.2 Units of Pressure
  • 11.3 Mercury Pressure Sensor
  • 11.4 Bellows, Membranes, and Thin Plates
  • 11.5 Piezoresistive Sensors
  • 11.6 Capacitive Sensors
  • 11.7 VRP Sensors
  • 11.8 Optoelectronic Pressure Sensors
  • 11.9 Indirect Pressure Sensor
  • 11.10 Vacuum Sensors
  • 11.10.1 Pirani Gauge
  • 11.10.2 Ionization Gauges
  • 11.10.3 Gas Drag Gauge
  • References
  • 12 Flow Sensors
  • 12.1 Basics of Flow Dynamics
  • 12.2 Pressure Gradient Technique
  • 12.3 Thermal Transport Sensors
  • 12.3.1 Hot-Wire Anemometers
  • 12.3.2 Three-Part Thermoanemometer
  • 12.3.3 Two-Part Thermoanemometer
  • 12.3.4 Microflow Thermal Transport Sensors
  • 12.4 Ultrasonic Sensors
  • 12.5 Electromagnetic Sensors
  • 12.6 Breeze Sensor
  • 12.7 Coriolis Mass Flow Sensors
  • 12.8 Drag Force Flowmeter
  • 12.9 Cantilever MEMS Sensors
  • 12.10 Dust and Smoke Detectors
  • 12.10.1 Ionization Detector
  • 12.10.2 Optical Detector
  • References
  • 13 Microphones
  • 13.1 Microphone Characteristics
  • 13.1.1 Output Impedance
  • 13.1.2 Balanced Output
  • 13.1.3 Sensitivity
  • 13.1.4 Frequency Response
  • 13.1.5 Intrinsic Noise
  • 13.1.6 Directionality
  • 13.1.7 Proximity Effect
  • 13.2 Resistive Microphones
  • 13.3 Condenser Microphones
  • 13.4 Electret Microphones
  • 13.5 Optical Microphones
  • 13.6 Piezoelectric Microphones
  • 13.6.1 Low-Frequency Range
  • 13.6.2 Ultrasonic Range
  • 13.7 Dynamic Microphones
  • References
  • 14 Humidity and Moisture Sensors
  • 14.1 Concept of Humidity
  • 14.2 Sensor Concepts
  • 14.3 Capacitive Humidity Sensors
  • 14.4 Resistive Humidity Sensors
  • 14.5 Thermal Conductivity Sensor
  • 14.6 Optical Hygrometers
  • 14.6.1 Chilled Mirror
  • 14.6.2 Light RH Sensors
  • 14.7 Oscillating Hygrometer
  • 14.8 Soil Moisture
  • References
  • 15 Light Detectors
  • 15.1 Introduction
  • 15.1.1 Principle of Quantum Detectors
  • 15.2 Photodiode
  • 15.3 Phototransistor
  • 15.4 Photoresistor
  • 15.5 Cooled Detectors
  • 15.6 Imaging Sensors for Visible Range
  • 15.6.1 CCD Sensor
  • 15.6.2 CMOS Imaging Sensors
  • 15.7 UV Detectors
  • 15.7.1 Materials and Designs
  • 15.7.2 Avalanche UV Detectors
  • 15.8 Thermal Radiation Detectors
  • 15.8.1 General Considerations
  • 15.8.2 Golay Cells
  • 15.8.3 Thermopiles
  • 15.8.4 Pyroelectric Sensors
  • 15.8.5 Microbolometers
  • References
  • 16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation16 Detectors of Ionizing Radiation
  • 16.1 Scintillating Detectors
  • 16.2 Ionization Detectors
  • 16.2.1 Ionization Chambers
  • 16.2.2 Proportional Chambers
  • 16.2.3 Geiger–Müller (GM) Counters
  • 16.2.4 Semiconductor Detectors
  • 16.3 Cloud and Bubble Chambers
  • References
  • 17 Temperature Sensors
  • 17.1 Coupling with Object
  • 17.1.1 Static Heat Exchange
  • 17.1.2 Dynamic Heat Exchange
  • 17.1.3 Sensor Structure
  • 17.1.4 Signal Processing of Sensor Response
  • 17.2 Temperature References
  • 17.3 Resistance Temperature Detectors (RTD)
  • 17.4 Ceramic Thermistors
  • 17.4.1 Simple Model
  • 17.4.2 Fraden Model
  • 17.4.3 Steinhart and Hart Model
  • 17.4.4 Self-Heating Effect in NTC Thermistors
  • 17.4.5 Ceramic PTC Thermistors
  • 17.4.6 Fabrication
  • 17.5 Silicon and Germanium Thermistors
  • 17.6 Semiconductor pn-Junction Sensors
  • 17.7 Silicon PTC Temperature Sensors
  • 17.8 Thermoelectric Sensors
  • 17.8.1 Thermoelectric Laws
  • 17.8.2 Thermocouple Circuits
  • 17.8.3 Thermocouple Assemblies
  • 17.9 Optical Temperature Sensors
  • 17.9.1 Fluoroptic Sensors
  • 17.9.2 Interferometric Sensors
  • 17.9.3 Super-High Resolution Sensing
  • 17.9.4 Thermochromic Sensors
  • 17.9.5 Fiber-Optic Temperature Sensors (FBG)
  • 17.10 Acoustic Temperature Sensors
  • 17.11 Piezoelectric Temperature Sensors
  • References
  • 18 Chemical and Biological Sensors
  • 18.1 Overview
  • 18.1.1 Chemical Sensors
  • 18.1.2 Biochemical Sensors
  • 18.2 History
  • 18.3 Chemical Sensor Characteristics
  • 18.3.1 Selectivity
  • 18.3.2 Sensitivity
  • 18.4 Electrical and Electrochemical Sensors
  • 18.4.1 Electrode Systems
  • 18.4.2 Potentiometric Sensors
  • 18.4.3 Conductometric Sensors
  • 18.4.4 Metal Oxide Semiconductor (MOS) Chemical Sensors
  • 18.4.5 Elastomer Chemiresistors
  • 18.4.6 Chemicapacitive Sensors
  • 18.4.7 ChemFET
  • 18.5 Photoionization Detectors
  • 18.6 Physical Transducers
  • 18.6.1 Acoustic Wave Devices
  • 18.6.2 Microcantilevers
  • 18.7 Spectrometers
  • 18.7.1 Ion Mobility Spectrometry
  • 18.7.2 Quadrupole Mass Spectrometer
  • 18.8 Thermal Sensors
  • 18.8.1 Concept
  • 18.8.2 Pellister Catalytic Sensors
  • 18.9 Optical Transducers
  • 18.9.1 Infrared Detection
  • 18.9.2 Fiber-Optic Transducers
  • 18.9.3 Ratiometric Selectivity (Pulse Oximeter)
  • 18.9.4 Color Change Sensors
  • 18.10 Multi-sensor Arrays
  • 18.10.1 General Considerations
  • 18.10.2 Electronic Noses and Tongues
  • 18.11 Specific Difficulties
  • References
  • 19 Materials and Technologies
  • 19.1 Materials
  • 19.1.1 Silicon as Sensing Material
  • 19.1.2 Plastics
  • 19.1.3 Metals
  • 19.1.4 Ceramics
  • 19.1.5 Structural Glasses
  • 19.1.6 Optical Glasses
  • 19.2 Nano-materials
  • 19.3 Surface Processing
  • 19.3.1 Spin Casting
  • 19.3.2 Vacuum Deposition
  • 19.3.3 Sputtering
  • 19.3.4 Chemical Vapor Deposition (CVD)
  • 19.3.5 Electroplating
  • 19.4 MEMS Technologies
  • 19.4.1 Photolithography
  • 19.4.2 Silicon Micromachining
  • 19.4.3 Micromachining of Bridges and Cantilevers
  • 19.4.4 Lift-Off
  • 19.4.5 Wafer Bonding
  • 19.4.6 LIGA
  • References
  • Appendix